Synthesis of Fluoranthenes and Indenocorannulenes: Elucidation of Chiral Stereoisomers on the Basis of Static Molecular Bowls

Yao-Ting Wu, ${ }^{\dagger, \ddagger}$ Tomoharu Hayama, ${ }^{\dagger}$ Kim K. Baldridge, ${ }^{\dagger}$ Anthony Linden, ${ }^{\dagger}$ and Jay S. Siegel ${ }^{*, \dagger}$
Contribution from the Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and Department of Chemistry, National Cheng-Kung University, No. 1 Ta-Hsueh Road, 701 Tainan, Taiwan

Received December 11, 2005; E-mail: jss@oci.unizh.ch

Abstract

Cycloaromatization of a peri diyne with an external alkyne provides a general route to indenofused polynuclear aromatics. Fluoranthenes 9 (or 13) are easily accessible in good to excellent yields ($75-99 \% ; 18$ examples) from the reaction of symmetric (or asymmetric) diynes 4 and alkynes 5 (or norbornadiene) in the presence of Wilkinson's catalyst. This formal $[(2+2)+2]$ cycloaddition can also be applied to generate various indenocorannulenes $\mathbf{2 8}$ from 2,3-diethynylcorannulene derivatives $\mathbf{2 7}$ and alkynes 5. The indenocorannulenes 28 exist in a static bowl form at room temperature with bowl-to-bowl inversion barriers higher than $24 \mathrm{kcal} / \mathrm{mol}$. This barrier renders the rate of inversion slow enough at room temperature to establish a class of chiral, bowl-shaped stereoiomers containing no tetrahedrally ligated atoms. The crystal structure of $\mathbf{2 8 g}$ provides insight into the bowl-shaped geometry of these compounds. This new synthetic method occurs under neutral conditions and tolerates various functional groups (e.g., alkyl, aryl, alcohols, and esters).

Introduction

Following Euler's rule, a planar sheet of hexagons can be converted into a curved surface by the inclusion of pentagons, twelve being a "magic" number for the creation of closed surfaces. ${ }^{1}$ In a chemical context, methods for the synthesis of sp^{2} carbon sheets with five-membered rings among networks of six-membered rings allow the synthesis of chemical Eulerean surfaces, like corannulene, fullerenes, and capped carbon tubes. ${ }^{2}$ Although the indenyl radical could be argued to be the simplest $6 / 5$ ring system of this ilk, the simplest curved surface is corannulene, within which fluoranthene is the simplest allbenzenoid fragment. Indenocorannulene is a higher order curved surface with two five-membered rings, and is to corannulene what fluoranthene is to naphthalene. The transition from a bowl to a capped-carbon tube occurs at $\mathrm{C}_{50} \mathrm{H}_{10}$, which is effectively per-indeno fused corannulene. ${ }^{3}$ As such, methods for synthesizing fluoranthene from naphthalene or indenocorannulene from corannulene provide routes to higher-order bowls and tubes.

In addition to being excellent model targets for developing $6 / 5$ ring systems, fluoranthenes are also important synthetic

[^0]intermediates en route to corannulene and derivatives. ${ }^{4}$ The Diels-Alder reaction of cyclopentadienone derivatives $\mathbf{3}$, and an alkyne 5 or equivalent (e.g., norbornadiene, $\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$ in 9, Scheme 1) with the subsequent elimination of carbon monoxide inter alia, is a commonly used method to access fluoranthene-based corannulene precursors. Cyclopentadienone derivatives $\mathbf{3}$ or direct precursors are often generated by the Knoevenagel condensation from a diketone $\mathbf{1}$ and a ketone $\mathbf{2} .{ }^{5}$ Direct carbonylation of diynes $\mathbf{4}$ has been used in some cases where the product cyclopentadienone is stable. ${ }^{6}$ Knoevenagel condensation is not suitable for acid- or base-sensitive functional

[^1]Scheme 1. Traditional Methods for the Preparation of Fluoranthenes 9

Scheme 2. Recently Developed Methods for the Preparation of Fluoranthenes.

groups. ${ }^{7}$ Other dieneophiles, such as acenaphthalene 6, react with cyclopentadienones 7^{8} or dienes $\mathbf{8}^{9}$ under the formal $[(2+2)+2]$ cycloaddition to generate di- or tetra-hydrofluoranthenes, which aromatize to fluoranthenes 9 in the presence of DDQ or potassium permanganate. In light of this mix of pluses and minuses, new routes to fluoranthene that avoid the preparation of asymmetric cyclopentadienones 7 would facilitate the synthesis of some key target compounds. ${ }^{8}$

Recently, Echavarren et al. reported an intramolecular cyclization of an enyne and an alkyne moiety at the peri $(1,8)$ positions of naphthalene leading to fluoranthene (Scheme 2). ${ }^{10}$ This formal $[4+2]$ cycloaddition is suitable only for the terminal enynes and alkynes. De Meijere et al. found fluoranthene to be accessible from 1-bromonaphthalene and 2-bromophenyl bo-

[^2]ronic acid by a one-pot Suzuki-Heck reaction with a yield of up to $97 \% .{ }^{11}$ Larock et al. discovered 1,4-palladium migration from 2-iodo-1-phenylnaphthalene to afford fluoranthene in an 81% yield. ${ }^{12}$ Each of these methods enriches our repertoire of synthetic transformations.

The reaction of two triple bonds in 1,8 -bis(phenylethynyl)naphthalene (4a) under thermal or photochemical conditions ${ }^{13}$ or in the presence of metal catalysts ${ }^{14}$ has been well studied. Most of the research focuses on intramolecular cyclizations to form 7-phenylbenzo[$k]$ fluoranthene (10a) and its derivative $\mathbf{1 0 b}$. Wilkinson's catalyst appears to reduce the amount of $\mathbf{1 0 a}$.

Over 40 years ago, fluoranthene derivatives were accessible by a two-step synthesis from 1,8-bis(phenylethynyl)naphthalene and alkynes with 1 equiv. of Wilkinson's catalyst; ${ }^{15,16}$ however, such a stoichiometric method is not suitable for larger scale syntheses. Badrieh et al. reported that when $\mathbf{4 a}$ was heated with a catalytic amount of RhCl_{3}-Aliquat 336, besides two cyclization adducts (10a and 10b), a new cycloaddition product 11 was also obtained; ${ }^{17}$ the 1 -rhodacyclopentadiene being a likely intermediate en route to $\mathbf{1 1}$.

These results indicate that formal $[(2+2)+2]$ cycloaddition (or dimerization) of diyne $\mathbf{4}$ is competitive with intramolecular cyclization in Badrieh's protocol. If an excess of an additional alkyne were used in this reaction, then it should be reasonable to prepare fluoranthenes as major products.

Synthesis of benzene derivatives via transition-metal catalyzed alkyne trimerization is well-known, ${ }^{18}$ but in general, fluoranthenes have not been synthesized by the catalytic $[(2+2)+2]$ cycloaddition of diynes and alkynes. Here we report an efficient method to prepared (a)symmetric 7,8,9,10-substituted fluoranthenes from the reaction of peri-diynes and alkynes catalyzed
(11) This synthetic method was also applied to prepare indenocorannulene (IC, Figure 3), see: Wegner, H. A.; Scott, L. T.; de Meijere, A. J. Org. Chem. 2003, 68, 883-887.
(12) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R. C., J. Am. Chem. Soc. 2003, 125, 11506-11507.
(13) Bossenbroek, B.; Sanders, D. C.; Curry, H. M.; Shechter, H. J. Am. Chem. Soc. 1969, 91, 371-379.
(14) (a) Dyker, G. J. Org. Chem. 1993, 58, 234-238. (b) Blum, J.; Baidossi, W.; Badrieh, Y.; Hoffman, R. E.; Schumann, H. J. Org. Chem. 1995, 60, 4738-4742.
(15) Müller, von E.; Thomas, R.; Zountsas, G. Liebigs Ann. Chem. 1972, 758, 16-28.
(16) A similar procedure was used to prepare an 5-iminocyclopentadiene derivative from diyne $\mathbf{4 a}$ and an isocyanide, see: Neidlein, R.; Kux, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 1324-1326.
(17) Badrieh, Y.; Blum, J.; Amer, I.; Vollhardt, K. P. C., J. Mol. Catal. 1991, 66, 295-312. Although the authors mentioned $\mathbf{1 1}$ as the major product in the abstract and discussion, the data in the Experimental Section shows it is the minor product.
(18) Reviews: (a) Fujiwara, M.; Ojima, I. in Modern Rhodium-Catalyzed Organic Reactions (Ed.: Evans, P. A.), Wiley-VCH: Weinheim, 2005, pp 129-149. (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 29012916. (c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49-92. (d) Schore, N. E. Chem. Rev. 1988, 88, 1081-1119. (e) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539-556. (f) Vollhardt, K. P. C. Acc. Chem. Res. 1977, 10, 1-8.

Scheme 3. Preparation of $7,8,9,10$-Tetrasubstituted Fluoranthenes 9 from Diynes 4 and Alkynes 5

by Wilkinson's complex. ${ }^{19,20}$ The experience acquired from the fluoranthene studies is applied to the synthesis of a series of indenocorannulenes.

Results and Discussions

A mixture of 1,8 -diiodonaphthalene (12) and a variety of terminal alkynes (3 eq.) under Sonogashira conditions ${ }^{21}$ (2.5 $\mathrm{mol} \%$ of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $10 \mathrm{~mol} \%$ of CuI in NEt_{3} at $40-50$ ${ }^{\circ} \mathrm{C}$) afforded diynes 4 in good to excellent yields (Scheme 3; Table 1). Due to the higher reactivity of aryl iodides than aryl bromides, o-bromophenylethyne can also be used in this reaction without loss of product specificity. Diyne $\mathbf{4 d}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\right.$ PhF_{5}) was prepared via successive Sonogashira reactions. The bulky 4-tert-butylphenylethyne did not give a satisfactory yield (34%) under the same conditions. When this reaction was carried out at $80^{\circ} \mathrm{C}$, the chemical yield was increased to $66 \% .{ }^{22}$

Heating diyne $\mathbf{4 a}-\mathbf{e}$ and 5 eq. of the alkyne $\mathbf{5 a - i}$ in the presence of Wilkinson's catalyst ($5 \mathrm{~mol} \%$), produces fluoranthenes $\mathbf{9 a - o}$ in good to excellent yields (Scheme 3; Table 1). ${ }^{23}$ Generally, terminal alkynes (or less bulky internal ones) afforded better yields than the diaryl internal acetylenes. Bis(trimethylsilyl)ethyne (5h) gave complicated results in p-xylene as described above, as well as when $\mathbf{5 h}$ was used as the solvent at $150{ }^{\circ} \mathrm{C}$ (entry 8 in Table 1). The reaction conditions were tolerant of many functional groups, as is known from normal Rh-catalyzed $[2+2+2]$ alkyne trimerization reactions. ${ }^{20}$ In comparison with the Knoevenagel condensation, base-sensitive functional group tolerance is an obvious advantage of this procedure (e.g., pentafluorophenyl). ${ }^{24}$

Preparation of 7,10-disubstitued fluoranthenes $\mathbf{1 3}$ should be possible from the diyne $\mathbf{4}$ and acetylene gas; however, the safety problems of using acetylene gas at high temperature/pressure
(19) Although the Rh complexes proved easier to handle here, the cobalt complex, $\mathrm{CoCp}(\mathrm{CO})_{2}$, is the most widely used, see: (a) Han, S.; Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int. Ed. 2002, 41, 3227-3230. (b) Dosa, P. I.; Whitener, G. D.; Vollhardt, K. P. C.; Bond, A. D.; Teat, S. J. Org. Lett. 2002, 4, 2075-2078.
(20) Alkyne trimerization with Wilkinson's catalyst, see: (a) Witulski, B.; Alayrac, C. Angew. Chem., Int. Ed. 2002, 41, 3281-3284. (b) Witulski, B.; Stengel, T.; Fernandez-Hernandez, J. M. Chem. Commun. 2000, 19651966. (c) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. Engl. 1999, 38, 2426-2430.
(21) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 6, 4467-4470. Reviews: (b) Sonogashira, K.; in Metal-Catalyzed CrossCoupling Reactions (Eds.: Diederich, F., Stang, P. J.), Wiley-VCH: Weinheim, 1998, pp 203-229. (c) Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Catalysts in Organic Synthesis; Springer: Berlin, 1999; pp 179-225.
(22) Preparation of 1,8 -bis(trimethylsilylethynyl)naphthalene with 0.2 equiv. of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ at greater than $80^{\circ} \mathrm{C}$ gave a quantitative yield, see ref 6 d . However, synthesis of 1,8-bis(allyldiphenylsilylethynyl)naphthalene was reported in a 60% yield, see ref 6 c .
(23) Only the reaction products from 4 are isolated and characterized. Yields are based on $\mathbf{4}$ as the limiting reagent. Trimers coming from alkynes 5 were also formed but neglected.
(24) It is known that pentafluorophenyl moiety is base sensitive, especially at the para-position for examples: (a) Buscemi, S.; Pace, A.; Calabrese, R.; Vivona, N.; Metrangolo, P. Tetrahedron 2001, 57, 5865-5871. (b) Allen, D. M.; Batsanov, A. S.; Brooke, G. M.; Lockett, S. J. J. Fluorine Chem. 2001, 108, 57-67. (c) Zhang, Y.; Wen, J. Synthesis 1990, 8, 727-728
make norbornadiene (NBD) a preferred acetylene equivalent. Caveats to this reagent substitution are the well-known reactions of NBD with alkynes ${ }^{25}$ in the presence of transition-metal catalysts to give (a) formal $[2+2],{ }^{26}$ (b) homo Diels-Alder, ${ }^{27}$ or (c) $[(2+2)+2+2]$ cycloadducts. ${ }^{28}$ NBD also generates various homo-coupling products in the presence of the different rhodium catalysts. ${ }^{29}$ Despite a manifold of possibilities, diynes 4 and NBD react to form mainly 7,10-disubstituted fluoranthenes $\mathbf{1 3}$ and byproducts $\mathbf{1 4}$ (Scheme 4). ${ }^{30,31}$ To our knowledge, heptacycles 14 are the first examples of formal $[(2+2)+(2+2)]$ cycloaddition of alkynes and NBD. ${ }^{32,33}$ Rare are reactions wherein four new bonds form in a one-pot transformation and in this case a three-, a five- and a seven-membered ring are constructed.

A limited survey of rhodium catalysts, such as $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, $[\mathrm{RhCl}(\mathrm{COD})]_{2}$, and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, displayed generally efficient catalysis and from good to excellent product yields and ratios (Table 2). Catalysts $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ or $\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ selectively form $\mathbf{1 3}$ in yields above 90%, to the exclusion 14. Typical reaction conditions were $5 \mathrm{~mol} \%$ catalyst in p-xylene, at $80-90^{\circ} \mathrm{C}$ for $48-60 \mathrm{~h}$. Addition of ligands, e.g., $\mathrm{Py}, \mathrm{PCy}_{3}$, and PPh_{3} to $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ also affected the product ratio, usually disfavoring 13. Comparison of Wilkinson's catalyst with the combination of $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ and 4 equiv. of PPh_{3} gave almost the same chemoselectivity between $\mathbf{1 3}$ and $\mathbf{1 4}$, but the former complex generated cleaner products. The substituents R^{1} and R^{2} in diynes $\mathbf{4}$ also play an important role in adjusting the ratio between $\mathbf{1 3}$ and 14 . Electron-deficient and less bulky substituents enhance the formation of $\mathbf{1 4}$. Other transition-metal catalysts, such as $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PdCl}_{2}(\mathrm{COD}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, PtCl_{2} and $\left[\mathrm{RuCl}_{2}(\mathrm{NBD})\right]_{n}$, either did not give the expected cycloadducts $\mathbf{1 3}$ (or 14) or afforded complicated mixtures.
(25) Review of reactions of NBD and alkynes. (a) Lautens, M.; Tam W. Adv. Metal-Org. Chem. 1998, 6, 49-101. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49-92.
(26) $[2+2]$ Cycloadducts, namely exo-3,4-disubstituted tricyclo[4.2.1.0 $\left.{ }^{2}, 5\right]$ non-3-enes, for example, see: (a) Villeneuve, K.; Jordan, R. W.; Tam, W. Synlett 2003, 2123-2128. (b) Jordan, R. W.; Tam, W. Org. Lett. 2001, 3, $2367-$ 2370. (c) Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 580-581.
(27) Homo Diels-Alder cycloadducts, for example, see: (a) Pardigon, O.; Tenaglia, A.; Buono, G. J. Mol. Catal. A: Chemical 2003, 196, 157-164. (b) Hilt, G.; Smolko, K. I. Synthesis 2002, 686-692. (c) Hilt, G.; du Mesnil, F.-X. Tetrahedron Lett. 2000, 41, 6757-6761. (d) Lautens, M.; Tam, W.; Lautens, J. C.; Edwards, L. G.; Crudden, C. M.; Smith, A. C. J. Am. Chem. Soc. 1995, 117, 6863-6879. (e) Pardigon, O.; Tenaglia, A.; Buono, G. J. Org. Chem. 1995, 60, 1868-1871. (f) Binger, P.; Albus, S. J. Organomet. Chem. 1995, 493, C6-C8. (g) Lautens, M.; Tam, W.; Edwards, L. G. J. Org. Chem. 1992, 57, 8-9.
(28) The reaction of acetylene gas in neat NBD with a catalytic amount of Ni$(\mathrm{CN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ or $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ gave a $[(2+2)+2+2]$ cycloadduct, namely tetracyclo[5.4.0.0..$^{2,9} 0^{8,10}$]undeca-3,5-diene. The same conditions with an internal alkyne, instead of acetylene gas, afforded a $[2+2]$ cycloadduct or homo Diels-Alder product, see: Schrauzer, G. N.; Glockner, P. Chem. Ber. 1964, 97, 2451-2462.
(29) Neat NBD used as the solvent, see: Acton, N.; Roth, R. J.; Katz, T. J.; Frank, J. K.; Maier, C. A.; Paul, I. C. J. Am. Chem. Soc. 1972, 94, 54465456.
(30) It was also observed that NBD as an acetylene unit participates in the $[2+2+2]$ cycloaddition with two alkynes to generate 1,3 -disubstituted benzenes as byproducts under the catalysis of the ruthenium complexes, see ref 26 c .
(31) Only the reaction products from $\mathbf{4}$ are isolated and characterized. Yields are based on 4 as the limiting reagent. Dimers coming from NBD were also formed but neglected.
(32) Primary communication: Wu, Y.-T.; Linden, A.; Siegel, J. S. Org. Lett. 2005, 7, 4353-4355.
(33) Other examples of $[(2+2)+4]$ cycloadducts, namely tetracyclo[5.4.0.0. $\left.{ }^{2.9} 0^{8,10}\right]$ -undeca-3-enes, from NBD and 1,3-butadienes, see: (a) Lautens, M.; Tam, W.; Sood; C. J. Org. Chem. 1993, 58, 4513-4515. (b) Chen, Y.; Snyder, J. K. J. Org. Chem. 1998, 63, 2060-2061.

Table 1. Preparation of $7,8,9,10$-Tetrasubstituted Fluoranthenes $\mathbf{9}^{d}$

entry	R^{1}	R^{2}	diyne (yield \%)	alkyne	R^{3}	R^{4}	product (yield \%)
1	Ph	Ph	4a (89)	5a	Ph	Ph	9a (83)
2			4a	5b	$4-n \mathrm{Bu}-\mathrm{Ph}$	$4-n \mathrm{Bu}-\mathrm{Ph}$	9b (86)
3			4a	5c	$n \mathrm{Pr}$	$n \mathrm{Pr}$	9c (99)
4			4a	5d	$\mathrm{CMe}_{2} \mathrm{OH}$	H	9d (99)
5			4a	5 e	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	9e (99)
6			4a	5 f	Ph	H	9 f (96)
7			4a	5 g	$4-n \mathrm{Bu}-\mathrm{Ph}$	$4-t \mathrm{Bu}-\mathrm{Ph}$	9 g (85)
8			4a	5h	TMS	TMS	9h (trace)
9	4-nBu-Ph	$4-n \mathrm{Bu}-\mathrm{Ph}$	4b (78)	5a	Ph	Ph	9 i (85)
10			4b	5b	$4-n \mathrm{Bu}-\mathrm{Ph}$	$4-n \mathrm{Bu}-\mathrm{Ph}$	9j (75)
11			4b	5 i	TMS	H	9k (99)
12	$4-t \mathrm{Bu}-\mathrm{Ph}$	$4-t \mathrm{Bu}-\mathrm{Ph}$	4c (66) ${ }^{\text {a }}$	5a	Ph	Ph	91 (83)
13			4c	5 g	$4-n \mathrm{Bu}-\mathrm{Ph}$	$4-t \mathrm{Bu}-\mathrm{Ph}$	9m (86)
14	Ph	$\mathrm{F}_{5} \mathrm{Ph}$	4d (95) ${ }^{\text {b }}$	5a	Ph	Ph	9n (77)
15	$2-\mathrm{Br}-\mathrm{Ph}$	$2-\mathrm{Br}-\mathrm{Ph}$	4e (91)	5c	$n \mathrm{Pr}$	$n \mathrm{Pr}$	$90(83){ }^{c}$

[^3]Table 2. Survey of Reaction Conditions that Form $13 / 14$ from 4 and NBD

entry	R^{1}	R^{2}	catalyst [mol \%]	$T\left({ }^{\circ} \mathrm{C}\right)$	time (h)	product (ratio) ${ }^{\text {a }}$	conversion (isolated yield)
1	Ph	Ph	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [5\%]	130	48	13a:14a (77:23)	100 (99)
2	Ph	Ph	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [5\%]	80	60	13a:14a (73:27)	$100(-)^{b}$
3	Ph	Ph	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [5\%]	50	60	13a:14a (77:23)	$31(-)^{b}$
4	Ph	Ph	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [2.5\%]	80	48	13a:14a (100:0)	100 (96) ${ }^{\text {c }}$
5	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]$	80	48	13a:14a (100:0)	100 (96) ${ }^{\text {c }}$
6	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]^{d}$	70	48	13a:14a (100:0)	100 (96) ${ }^{c}$
7	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]+\mathrm{MeCN}$	80	60	13a:14a (100:0)	100 (96) ${ }^{\text {c }}$
8	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]+\mathrm{Py}$	80	60	13a:14a (67:33)	$100(-)^{b}$
9	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]+\mathrm{PPh}_{3}$	80	60	13a:14a (75:25)	$100(-)^{b}$
10	Ph	Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]+\mathrm{PCy}_{3}$	80	24	13a:14a (100:0)	56 (-)
11	Ph	Ph	$\mathrm{RhH}\left(\left(\mathrm{PPh}_{3}\right)_{4}[5 \%]\right.$	80	60	13a:14a (100:0)	58 (-)
12	$4-t \mathrm{Bu}-\mathrm{Ph}$	$4-t \mathrm{Bu}-\mathrm{Ph}$	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}[5 \%]$	130	60	13b:14b (81:19)	100 (95)
13	$4-t \mathrm{Bu}-\mathrm{Ph}$	$4-t \mathrm{Bu}-\mathrm{Ph}$	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]$	90	60	13b:14b (100:0)	100 (92)
14	Ph	$\mathrm{F}_{5} \mathrm{Ph}$	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}[5 \%]$	130	60	13c:14c (51:49)	100 (83)
15	$2-\mathrm{Br}-\mathrm{Ph}$	$2-\mathrm{Br}-\mathrm{Ph}$	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}[5 \%]$	110	60	13d:14d (=98:2)	100 (78) ${ }^{\text {e }}$
16	$4-\mathrm{E}-\mathrm{Ph}{ }^{f}$	4-E-Ph	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}[5 \%]$	80	45	13e:14e (63:37)	100 (95)
17	4-E-Ph	4-E-Ph	$[\mathrm{RhCl}(\mathrm{COD})]_{2}[2.5 \%]$	90	60	13e:14e (100:0)	100 (99)

[^4]Scheme 4. Preparation of 7,10-Substituted Fluoranthenes $\mathbf{1 3}$ from Diynes 4 and NBD

Acenaphthylene (6), ${ }^{34}$ reacts with diyne $\mathbf{4 a}$ to produce $6 \mathrm{a}, 14 \mathrm{a}-$ dihydro-7,14-diphenylacenaphtho[1,2-k]fluoranthene (15) and its fully aromatized product $\mathbf{1 6}^{35}$ in ca. 75% yield. In this reaction, a trace (ca. 4\%) of the intramolecular cyclization product 10a was also observed. The formation of $\mathbf{1 6}$ probably happened during the workup by the oxidation of $\mathbf{1 5}$ with air.

To highlight the key role of the proximal diyne in this reaction, a mixture of 1,2-diphenylethyne, NBD and Wilkinson's

[^5]catalyst was heated at $130^{\circ} \mathrm{C}$ and shown to produce only starting materials, according to the HPLC and GC analysis. Formation of the 1-rhodacyclopentadiene derivatives 19 appears to be determinant. ${ }^{36}$ Assuming this intermediate, a working mechanism for the formation of $\mathbf{1 3}$ and $\mathbf{1 4}$ can be formulated by analogy with related literature processes (Scheme 6). ${ }^{37}$ Initially, 1-rhodacyclopentadiene 19 is formed, and subsequent coordination of NBD partitions between an η^{4}-complex $\mathbf{1 8}$ or an η^{2} complex 20. Complex 18 can easily rearrange to the deltacyclane derivative 17. Heptacycle 14 is produced from the intermediate 17 after a reductive elimination of the Rh complex. In contrast, complex 20 inserts NBD from its ligand sphere to afford σ-complex 22. A reductive elimination of the Rh catalyst gives a transient dihydrofluoranthene 21 that thermally eliminates cyclopentadiene to produce fluoranthene 13.

Scott and co-workers reported that dibenzo $[a, g]$ corannulene
(36) The crystal structure of a similar cobalt complex see: (a) Diercks, R.; Eaton, B. E.; Guertzgen, S.; Jalisatgi, S.; Matzger, A. J.; Radde, R. H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1998, 120, 8247-8248. (b) Rh complex: Adams, R. D.; Qu, B. J. Clust. Sci. 2000, 11, 55-65.
(37) The detailed mechanism of formation of a [2+2] cycloadduct or a homo Diels-Alder product remains open, see ref $25 \mathrm{a}, \mathrm{p} 94$.

Scheme 5. Synthesis of
6a,14a-Dihydro-7,14-diphenylacenaphtho[1,2-k]fluoranthene (15)

Scheme 6. Proposed Mechanism of the Reaction of Diynes 4 and NBD

$[R h]=\operatorname{LRhCl}\left(\mathrm{L}=\mathrm{PPh}_{3}, \eta^{2}-\mathrm{NBD}\right)$
is accessible by a 7,10-bis(2-bromophenyl)fluoranthene (13d) using a Heck-type intramolecular arylation. ${ }^{38}$ The same strategy was applied by Rabideau et al. to synthesize 1,2-dihydrocyclopenta $[b, c]$ dibenzo $[g, m]$ corannulene. ${ }^{39}$ These leading works inspired us to prepare 7,10-bis(2-bromophenyl) substituted fluoranthenes using our formal $[(2+2)+2]$ protocol. Products of this type can be regarded as potential precursors of 1,2-disubstituted dibenzo $[d, m]$ corannulene. Fluoranthene derivatives 90 or 13d are generated from 1,8-bis(2-bromophenylethynyl)naphthalene $\mathbf{4 e}$ and 4-octyne or NBD, respectively; however, a lower reaction temperature $\left(110^{\circ} \mathrm{C}\right.$ instead of $\left.130^{\circ} \mathrm{C}\right)$ was necessary in order to reduce the amount of the byproduct(s)..40 To probe the structure of this side product further, diyne $\mathbf{4 e}$ alone was heated at $110{ }^{\circ} \mathrm{C}$ for 60 h and afforded a complicated mixture, which after washing with hexane, yielded a clean yellow solid 23. X-ray crystal analysis revealed an unusual structure for 23 (Scheme 7 and Figure 1), instead of the expected structure of 24. Notably, compound $\mathbf{2 3}$ was observed as a minor byproduct in the $[(2+2)+2]$ cycloaddition reaction.

This successful method for the synthesis of fluoranthene derivatives was applied to the preparation of indenocorannulenes from 2,3-diethynylcoranulene 27. The key starting materials for

[^6]Scheme 7. Unusual Intramolecular Cyclization Adduct 23 from Diyne 4e

Figure 1. Molecular structure of $\mathbf{2 3}$ in the crystal. ${ }^{41}$
the $[(2+2)+2]$ cycloadditions are accessible from the corresponding 2,3-dichlorocorannulene derivatives $\mathbf{2 5}$. To circumvent the well-known problems of cross coupling reactions involving aryl chlorides and alkynes, ${ }^{42}$ we implemented a modification of Nolan's protocol ${ }^{43,44}$ to prepare the 2,3-diethynylcorannulenes 27. From 25 and trimethyltin-substituted alkynes 26, several derivatives could be synthesized (Scheme 8). ${ }^{45}$ In some cases, diynes 27 were isolated with small impurities; however, the level of purity did not inhibit carrying the material on to the next step. ${ }^{46}$

Indenocorannulenes 28 are accessible from the reaction of diynes 27 and alkynes 5 (Table 3). Comparing the yields for indenocorannulenes 28 with analogous fluoranthenes 9 , the latter are always superior; however, the reaction conditions were not optimized to increase the yield of the more highly strained indenocorannulene products. It has been observed that the substituents R^{7} in diynes 27 and R^{3} and R^{4} in alkynes 5 play important roles in this formal $[(2+2)+2]$ cycloaddition. Initial studies suggest that alkyl functional groups at the R^{7} position give lower chemical yields than aryl moieties.

[^7]Scheme 8. Preparation of Indenocorannulenes 28 from Diynes 27 and Alkynes 5

Single crystals of $\mathbf{2 8 g}$ were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$, and the crystal structure determination shows that two symmetryindependent molecules of $\mathbf{2 8 g}$ crystallize with one disordered molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Some of the ester groups in the molecules of $\mathbf{2 8 g}$ are slightly disordered. The disorder of the solvent molecule could not be modeled adequately, so the contribution of the solvent molecule to the intensity data was removed by using the SQUEEZE ${ }^{47}$ routine of the PLATON ${ }^{48}$ program. The molecules pack in the crystal lattice such that columns are formed where the bowls are stacked pointing in approximately the same direction, but the adjacent columns have the bowls facing in the opposite direction (Figure 2). Within each column, the bowls are slightly slipped sideways with respect to the molecules immediately above and below. To our knowledge, the crystal structure of $\mathbf{2 8 g}$ is the first example within the indenocorannulene family.

Quantitative aspects of the structure show the degree of strain and distortion in 28g (Figure 3). There are two molecules in the asymmetric unit (mol A and mol B) and a potential of bilateral symmetry over which the molecular geometry can be averaged. The experimental and computational results are compared by averaging of the crystal structure values over mol A and mol B as well as over the expected symmetry equivalent positions, assuming bilateral symmetry. The experimental geometry of the bowl is overall well represented by the computations insofar as the trends of the bond lengths as a function of bond type correlate. The computations predict a slightly longer bond length on average and specifically longer bonds for all spoke, flank β, γ, and rim β sites. Despite this general elongation, the computations still predict key features such as the fact that the spoke γ bond is the anomalously short bond in the molecule, consistent with that found in each of the molecules in the asymmetric unit of the crystal structure. Overall, the bond lengths are common to other bowl structures.

Curvature and bowl depth are two characteristic features of molecular bowls. The bowl depth in $\mathbf{2 8 g}$ as gauged from the distance between hub and rim planes is $1.02 / 1.05 \AA(\mathrm{~mol} \mathrm{~A} / \mathrm{mol}$ B) and $1.07 \AA$ (cacld), respectively. The analogous experimental bowl depth for corannulene is $0.87 \AA$. The π-orbital axis vector
(47) van der Sluis, P.; Spek, A. L. Acta Crystallogr., Sect. A 1990, 46, 194201.
(48) Spek, A. L. PLATON, Program for the Analysis of Molecular Geometry, University of Utrecht, The Netherlands, 2005.
(POAV) ${ }^{49}$ pyramidalization angles in the crystal structure calculated for the carbon atoms of the hub ring are $8.8^{\circ}, 9.8^{\circ}$, and 10.8° (averaged over mol A and B and bilateral symmetry) vs 9.0° and 9.9° and 11.0° (calcd), respectively; ${ }^{50}$ however, the "ace-" ring adopts a more flat conformation (POAV $=0.7^{\circ}$, 4.9°, and $6.7^{\circ} ; 4.6^{\circ}(\mathrm{C} 7), 6.4^{\circ}(\mathrm{C} 8), 4.8^{\circ}(\mathrm{C} 9), 0.2(\mathrm{C} 21)$, and 0.0 (C26)). For reference corannulene and C_{60} have hub POAV angles of 8.7 and 11.6 , respectively.

The curvature imparts special reactivity to molecular bowls. We predicted a shift of electron density to the base of the bowl with greater curvature. ${ }^{3}$ We also demonstrated the binding of metals via η^{6} ligation to favor sites of lower curvature. ${ }^{51}$ In contrast, η^{2} ligation should be enhanced and therefore the spoke γ bond with calculated POAV angles of 11.0° and 6.7° should be especially receptive to metal complexation and other addition chemistry. Position C6/C10 in nonsubstituted indenocorannulene IC (Figure 3) in the presence of potassium undergoes the reductive dimerization. ${ }^{52}$ The arene of the indeno fusion is relatively normal; it presents a more or less flat geometry with bond lengths as expected from indene or fluoranthene.

Derivatives of $\mathbf{2 8}$ allow us to test our previous quartic correlation of bowl depth with inversion barrier. ${ }^{54}$ On the basis of corannulene's predicted barrier of $11.5 \mathrm{kcal} / \mathrm{mol}$ and a bowl depth of $0.87 \AA$, we would expect a barrier of between 22 and $27 \mathrm{kcal} / \mathrm{mol}$ for the bowl depths of $1.02-1.07 \AA$ found above (equation). This prediction leads to the expectation that new stereoisomers can be created based on the restricted bowlinversion properties in indenocorannulenes. Motivated by this hypothesis, we undertook dynamic NMR studies of a subset of derivatives of $\mathbf{2 8}$.

$$
\left[E_{\mathrm{a}}=\left(\text { bowl depth }{ }_{\mathrm{IC}} / \text { bowl depth } \text { corannulene }\right)^{4} * 11.5 \mathrm{kcal} / \mathrm{mol}\right]
$$

The ${ }^{13} \mathrm{C}$ NMR spectrum of tetraphenylindenocorannulene 28a displayed a greater number of signals than would be expected from a planar, or rapidly inverting bowl structure (cf. 9a). This result indicates that indenocorannulenes $\mathbf{2 8}$ exist as static bowl forms at room temperature on the NMR time scale. This finding is also consistent with earlier findings on the relationship between annelated corannulene structure and bowl-inversion barrier height. ${ }^{54}$ The predicted barrier for 28a was higher than the expected barrier to rotation around the aryl-substituent to indenocorannulene bond. ${ }^{55}$ As such, 28a could only give a lower limit to the barrier, which would not suffice to establish the steroisomeric phenomena. Thus, the alcohol 28b was synthesized and used to obtain an accurate assessment of the inversion barrier.

[^8]Table 3. Preparation of Indenocorannulenes 28

entry	S. M.	R^{5}	R^{6}	R^{7}	diyne (yield \%)	alkyne	R^{3}	R^{4}	product (yield \%)
1	25a	H	H	Ph	27a (33)	5a	Ph	Ph	28a (54)
2	25a	H	H	Ph	27a	5d	$\mathrm{CMe}_{2} \mathrm{OH}$	H	28b (60)
3	25a	H	H	$n \mathrm{Pr}$	27b (34)	5k	$\mathrm{CH}(\mathrm{OEt})_{2}$	H	28c (14) ${ }^{\text {a }}$
4	25a	H	H	$n \mathrm{Pr}$	27b	51	$\mathrm{CO}_{2} \mathrm{Me}$	H	28d (trace) ${ }^{\text {b }}$
5	25a	H	H	$n \mathrm{Pr}$	27b	5a	Ph	Ph	28e (42)
6	25b	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	27c (65)	5a	Ph	Ph	$28 f(64)$
7	25b	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	27c	5e	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	28g (19)
8	25b	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	27c	5c	$n \mathrm{Pr}$	${ }_{n} \mathrm{Pr}$	28h (57)
9	25b	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	$n \mathrm{Pr}$	27d (51)	5a	Ph	Ph	$28 i(47)$
10	25c	Ph	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	27e (42)	5a	Ph	Ph	28j (81)

${ }^{a} \mathbf{2 8} \mathbf{c}$ was isolated as an aldehyde and $\mathbf{2 7 b}$ (69%) was recovered. ${ }^{b} \mathbf{2 7 b}$ (65%) was recovered.

Figure 2. Crystal packing of 28g.

Figure 3. Molecular structure of $\mathbf{2 8 g}$ in the crystal. ${ }^{53}$
Determination of the coalescence temperature was limited by temperature specifications on the NMR instrument. Even at $172{ }^{\circ} \mathrm{C}$, two separate signals of methyl groups are observed. ${ }^{56}$ Therefore, it can be concluded that the bowl-to-bowl inversion barrier of indenocorannulenes must be higher than $24 \mathrm{kcal} / \mathrm{mol}$, which is consistent with the estimates from structure correlation studies. Indeed, the determination of this barrier limit and the substitution pattern of $\mathbf{2 8 b}$ meet the criteria necessary to demonstrate stereogenicity due to slow bowl inversion character. Energetic computations of the nonsubstituted indenocorannulene

[^9](IC) via MP2/cc-pVDZ//B3LYP/cc-pVDZ predict a bowl-tobowl inversion barrier of $29.8 \mathrm{kcal} / \mathrm{mol}$ (Table 5). Bowlinversion barriers above $25 \mathrm{kcal} / \mathrm{mol}$ imply inversion half-lives on the order of weeks in solution at room temperature. As such, 28b represents a chiral buckybowl with persistent stereochemistry on the laboratory time scale. This result now opens the way for the development of new chiral stereoisomers based on annelated corannulenes. The chiroptical properties of pure enantiomeric forms of buckybowls are being investigated.

Conclusion and Outlook

This formal $[(2+2)+2]$ cycloaddition from peri-diynes and alkynes provides an easy way to prepare highly substituted fluoranthenes $\mathbf{9}$ and $\mathbf{1 3}$ and indenocorannulenes 28. Furthermore the general idea that peri dialkynyl aromatics can serve as general synthetic precursors for the introduction of fivemembered rings into higher order curved aromatic surfaces is established. Noting that every site in corannulene has a peri partner, implies that the conversion of per-substituted coran-

Table 4. Bond Distances (\AA) by Bond Type for $\mathbf{2 8 g}$ (X-ray) and Indenocorannulene (IC, calcd.)

bond ${ }^{\text {a }}$	28 gmol A		28 gmol B		28 gavg	$1 \mathrm{C}^{\text {b }}$	$\Delta(28-\mathrm{IC})^{\text {c }}$
$\operatorname{Rim}_{\alpha}\left(\mathrm{R}_{\alpha}\right)$	1.394	\times	1.389	\times	1.3915	1.3872	0.43
R_{β}	1.371	1.383	1.388	1.373	1.3783	1.3905	1.22
R_{γ}	1.394	1.384	1.375	1.397	1.398_{8}	1.3948	0.40
Flank ${ }_{\alpha}\left(\mathrm{F}_{\alpha}\right)$	1.465	1.439	1.457	1.460	1.455_{3}	1.4500	0.53
F_{β}	1.449	1.437	1.449	1.440	1.4438	1.4471	0.33
F_{γ}	1.440	1.441	1.447	1.429	1.4393	1.4493	1.00
F_{δ}	1.439	1.457	1.452	1.448	1.449_{0}	1.4596	1.06
F_{ϵ}	1.430	1.427	1.426	1.427	1.4275	1.4319	0.44
$\operatorname{Hub}_{\alpha}\left(\mathrm{H}_{\alpha}\right)$	1.419	\times	1.437	\times	1.4280	1.4310	0.30
H_{β}	1.409	1.426	1.425	1.429	1.422_{3}	1.4257	0.34
H_{γ}	1.410	1.419	1.420	1.411	1.4150	1.4189	0.39
Spoke $_{\alpha}\left(\mathrm{S}_{\alpha}\right)$	1.369	1.381	1.375	1.363	$1.372{ }_{0}$	1.3898	1.78
S_{β}	1.392	1.381	1.391	1.388	1.3880	1.3996	1.16
S_{γ}	1.348	\times	1.357	\times	1.352_{5}	1.3632	1.07
G	1.480	1.501	1.496	1.485	1.490_{5}	1.4895	0.10
A	1.425	\times	1.443	\times	1.434_{0}	1.4389	0.49

${ }^{a}$ Bond Type: $\mathrm{R}=$ Rim; F = Flank; H = Hub; S = Spoke; G = Gable; A = Ace-. ${ }^{b}$ calcd indenocorannulene (IC) at B3LYP/cc-pVDZ. ${ }^{c}$ Unit:pm.
Table 5. Bowl-to-Bowl Inversion Barriers of Corannulene Derivatives ${ }^{a}$

	A	B	C	D	
B3LYP/cc-pVDZ	9.2^{57}	27.7^{54}	25.6^{54}	2	
MP2/cc-pVDZ//B3LYP/cc-pVDZ	11.0^{54}	30.9^{54}	28.9^{54}		
B3LYP/6-31G**//RHF or B3LYP/3-21G			24.1^{39}	19.3^{39}	
RHF/cc-pVDZ	9.2^{54}	29.2^{54}	26.6^{54}		
Exp.	11.5^{58}		27.7^{59}	ca. 23.1^{39}	>24

${ }^{a}$ unit: $\mathrm{kcal} / \mathrm{mol} .{ }^{b} \mathrm{IC}=$ Indenocorannulene.
nulenes to capped carbon tubes is presaged by the results presented here. Given the great advances that have come in the preparative scale syntheses of corannulene derivatives, it is reasonable to expect a solution phase synthesis of carbon tubes with homogeneous molecular weight distributions.

With the synthetic technology to prepare indenocorannulenes at hand, the study of the physical properties with the use of florescence, UV-Visible and cyclic voltammety spectroscopy is in progress. Preliminary observations in this area betray an interesting transition of material properties from planar aromatics, to bowls and beyond.

Experimental Section

General: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Bruker AMX 300 (300 and 75.5 MHz). IR: Bruker IFS 66 (FT-IR). EI-MS: Finnegan MAT 95 spectrometer (70 eV). High-resolution mass data (HRMS) were obtained by preselected-ion peak matching at $R \approx 10000$ to be within $\pm 3 \mathrm{ppm}$ of the exact mass. Elemental analyses: Mikroanalytisches Laboratorium des Organisch-Chemisches Institut der Universität Zürich. Chromatography: Merck silica gel 60 ($230-400 \mathrm{mesh})$ or Fluka neutral alumina (Brockmann I, Activity II). Solvents for chromatography were technical grade and freshly distilled before use. 1,8-Diiodonaphthalene (12), ${ }^{13}$ 7,10-diphenylfluoranthene (13b), ,32 3,6-diphenyltetracyclo[5.4.0.0..$\left.^{2,} 0^{8,10}\right]$ -undec-3,5-dieno $[4,5-d]$ acenaphthylene (14b), ${ }^{32}$ ethynylpentafluorobenzene, ${ }^{60}$-bromophenylethyne, ${ }^{2 \mathrm{lc}}$ 2,3-dichlorocorannulene 25a, ${ }^{4 \mathrm{~h}}$ 1,3-bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2H-imidazol-2-ylidene monohydrochloride (IProHCl), ${ }^{61}$ trimethyl(phenylethynyl)stannane (26a), ${ }^{62}$

[^10]trimethyl(1-pentynyl)stannane (26b) ${ }^{63}$ were prepared according to the literature procedures. Other compounds, which are not mentioned in the Experimental Section and Supporting Information, are commercially available.
General Procedure for Preparation of Diynes $\mathbf{4}$ by the Sonogashira Coupling (GP1): To a solution of the respective terminal alkyne (15.9 $\mathrm{mmol})$ and diiodide $\mathbf{1 2}(5.26 \mathrm{mmol})$ in $\mathrm{NEt}_{3}(10 \mathrm{~mL})$ in a screw-capped Pyrex bottle $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(100 \mathrm{mg}), \mathrm{CuI}(100 \mathrm{mg})$ and $\mathrm{PPh}_{3}(100 \mathrm{mg})$ are added at ambient temperature. The reaction mixture is purged with nitrogen for 5 min . The sealed bottle is heated at $40-50^{\circ} \mathrm{C}$ overnight (ca. 16-24 h). After cooling to room temperature, the suspension is filtered through a 3 cm thick layer of diatomaceous earth, and the diatomaceous earth is rinsed well with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The solvent of the filtrate is removed under reduced pressure, and the residue is subjected to chromatography on silica gel. Elution with hexane/ $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} affords the coupling product 4 .

1,8-Bis(phenylethynyl)naphthalene (4a): According to GP1, a mixture of $\mathbf{1 2}(2.00 \mathrm{~g}, 5.26 \mathrm{mmol})$, phenylethyne ($1.62 \mathrm{~g}, 15.9 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(100 \mathrm{mg}), \mathrm{CuI}(100 \mathrm{mg}), \mathrm{PPh}_{3}(100 \mathrm{mg})$ and $\mathrm{NEt}_{3}(15$ mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $40^{\circ} \mathrm{C}$ for 11 h . After filtration and removal of the solvent, the residue was subjected to chromatography on silica gel. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:0 to 10:1) gave 1.53 $\mathrm{g}(89 \%)$ of $\mathbf{4 a}\left[R_{f}=0.44\left(\mathrm{SiO}_{2}\right.\right.$, hexane/ $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1\right)\right]$ as a pale yellow solid ($\mathrm{mp} 98-99^{\circ} \mathrm{C}$), which was directly used without any further purification. Further crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane afforded a pale yellow crystals, $\mathrm{mp} 99-100^{\circ} \mathrm{C}$.

1,8-Bis(4-s-butylphenylethynyl)naphthalene (4b): According to GP1, a mixture of $\mathbf{1 2}(2.00 \mathrm{~g}, 5.26 \mathrm{mmol}), 4-n$-butylphenylethyne (2.50 $\mathrm{g}, 15.8 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(100 \mathrm{mg}), \mathrm{CuI}(100 \mathrm{mg}), \mathrm{PPh}_{3}(100 \mathrm{mg})$, and $\mathrm{NEt}_{3}(15 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $50^{\circ} \mathrm{C}$ for 21 h. After filtration and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 10:1 to 5:1) gave $1.81 \mathrm{~g}(78 \%)$ of $\mathbf{4 b}\left[R_{f}=0.53\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 5:1)] as a pale green solid, $\mathrm{mp} 80-81^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=2958$,

[^11]2924, 2868, 2206 ($\mathrm{C} \equiv \mathrm{C}$), 1567, 1509, 1375, 825, 767. $-{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{sext}, J$ $=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.51-1.61(\mathrm{~m}, 4 \mathrm{H}), 2.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.91-$ $6.94(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{dd}, J=7.5, J=8.4 \mathrm{~Hz}, 2$ H), 7.80 (dd, $J=1.5, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, J=1.5, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=13.8(+)$, $22.2,33.4,35.5$ (all -), 89.0, 96.9, 120.9, 121.1, 134.1, 142.7 ($\mathrm{C}_{\text {quat }}$), 125.4, 127.9, 129.3, 131.5×2, 134.7 (all +). MS (70 eV), $m / z(\%)$: $440(100)\left[\mathrm{M}^{+}\right], 397$ (60), 339 (30), 326 (17). Elemental analysis calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{32}$ (440.6): $\mathrm{C} 92.68, \mathrm{H} 7.32$; found: $\mathrm{C} 92.65, \mathrm{H} 7.44$. HRMS (EI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{32}: 440.2504$; found: 440.2496 .

1,8-Bis[(4-tert-butylphenyl)ethynyl]naphthalene (4c): According to GP1, a mixture of $\mathbf{1 2}(0.50 \mathrm{~g}, 1.32 \mathrm{mmol})$, 4-tert-butylphenylethyne ($627 \mathrm{mg}, 3.96 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25 \mathrm{mg}), \mathrm{CuI}(25 \mathrm{mg}), \mathrm{PPh}_{3}(25$ mg) and $\mathrm{NEt}_{3}(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $80^{\circ} \mathrm{C}$ for 20 h . After filtration and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane gave $384 \mathrm{mg}(66 \%)$ of $\mathbf{4 c}\left[R_{f}=0.20\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane $\left.)\right]$ as a pale yellow solid, $\mathrm{mp} 188-189{ }^{\circ} \mathrm{C}, R_{f}=0.53\left(\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1\right)$. IR (KBr): v $\mathrm{cm}^{-1}=2194(\mathrm{C} \equiv \mathrm{C}), 1930,1565,1502,1375,1361,1266,828,765$, 563. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=1.28(\mathrm{~s}, 18 \mathrm{H}), 7.13-$ 7.17 (m, 4 H), $7.24-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{dd}, J=7.2,8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80(\mathrm{dd}, J=1.2,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=1.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=31.1(+), 34.6,89.1$, $96.9,120.8,121.1,134.8,151.0$ (all Cquat $^{\text {q }}$) $124.8,125.5,129.3,131.4$, $134.0\left(\right.$ all +). One $\mathrm{C}_{\text {quat }}$ cannot be observed due to the signals overlap. MS (70 eV), m/z (\%): 440 (100) [M $\left.{ }^{+}\right], 425$ (41), 384 (47), 369 (38), 327 (21), 326 (20), 56 (23). Elemental analysis calcd. (\%) for $\mathrm{C}_{34} \mathrm{H}_{32}$ (440.6): C 92.68, H 7.32; found: C 92.70, H 7.45. HRMS (EI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{32}$: 440.2504 ; found: 440.2498 .

1-(Pentafluorophenylethynyl)-8-(phenylethynyl)naphthalene (4d): A mixture of 1-iodo-8-(phenyl-ethyl)naphthalene ($683 \mathrm{mg}, 1.93$ mmol), pentafluorophenylethyne ($481 \mathrm{mg}, 2.50 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(25 \mathrm{mg}), \mathrm{CuI}(20 \mathrm{mg}), \mathrm{PPh}_{3}(20 \mathrm{mg})$ and $\mathrm{NEt}_{3}(7 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $40^{\circ} \mathrm{C}$ for 21 h . After filtration and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:0 to 10:1) gave $770 \mathrm{mg}(95 \%)$ of $4 \mathbf{d}\left[R_{f}=0.65\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane/ $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1\right)\right]$ as pale yellow needles, mp $155{ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2220(\mathrm{C} \equiv \mathrm{C}), 1517,1497,1565,1096$, 986, 922, 824, 754, 689. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=7.11-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.93(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=79.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 89.3,96.7,101.3(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}), 119.1,120.7,131.2,134.1,135.6$ (m), 139.7 (m), 142.6 (m), $145.0(\mathrm{~m}), 148.4(\mathrm{~m})$ (all Cquat) ${ }^{2}$, 125.3, 125.8, 127.6, 127.8, 129.6, 130.8, 131.0, 134.4, 135.1 (all +). ${ }^{19} \mathrm{~F}\left(282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=-163.2$ $(\mathrm{td}, J=7.2, J=22.3 \mathrm{~Hz}, 2 \mathrm{~F}),-154.5(\mathrm{t}, J=20.9 \mathrm{~Hz}, 1 \mathrm{~F}),-136.1$ (dd, $J=7.2, J=21.7 \mathrm{~Hz}, 2 \mathrm{~F}$). $-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 420 / 419 /$ 418/417/416 (5/29/100/17/10) [M ${ }^{+}$], 398 (65), 378 (16), 367 (11), 199 (12). HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{11} \mathrm{~F}_{5}$: 418.0781; found: 418.0770.

1,8-Bis[(2-bromophenyl)ethynyl]naphthalene (4e): According to GP1, a mixture of $\mathbf{1 2}(2.00 \mathrm{~g}, 5.26 \mathrm{mmol})$, 2-bromophenylethyne (2.86 $\mathrm{g}, 15.8 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(100 \mathrm{mg}), \mathrm{CuI}(100 \mathrm{mg}), \mathrm{PPh}_{3}(100 \mathrm{mg})$ and $\mathrm{NE}_{3}(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $50^{\circ} \mathrm{C}$ for 12 h. After filtration and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 10:1 to 5:1) gave a pale yellow oil. Crystallization from hexane afforded $2.33 \mathrm{~g}(91 \%)$ of $4 \mathrm{e}\left[R_{f}=0.30\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)\right]$ as pale yellow needles, $\mathrm{mp} 111-112^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): ~ v \mathrm{~cm}^{-1}=2203(\mathrm{C} \equiv \mathrm{C})$, 1554, 1467, 1432, 1376, 1044, 1024, 824, 765, 750. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=6.90-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=94.1,95.2$,
120.4, 125.4, 125.8, 131.2, 134.0 (all $\mathrm{C}_{\text {quat }}$), 125.6, 126.4, 128.9, 129.9, 131.9, 133.1, 135.0 (all +). MS (70 eV), $\mathrm{m} / \mathrm{z}(\%): 489 / 488 / 487 / 486 /$ 485/484 (4/15/8/28/4/15) [$\left.\mathrm{M}^{+}\right], 408 / 407 / 406 / 405$ (4/10/7/9) [$\left.\mathrm{M}^{+}-\mathrm{Br}\right]$, 326 (100) $\left[\mathrm{M}^{+}-\mathrm{Br}_{2}\right], 162$ (28). Elemental analysis calcd. (\%) for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Br}_{2}$ (486.2): C 64.23, H 2.90 ; found: C 63.99 , H 3.02. HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Br}_{2}$: 483.9462; found: 483.9455 .

1,8-Bis[(4-methoxycarbonylphenyl)ethynyl]naphthalene (4f): According to GP1, a mixture of $\mathbf{1 2}(0.80 \mathrm{~g}, 2.11 \mathrm{mmol})$, 4-ethynylbenzoic acid methyl ester ($1.01 \mathrm{~g}, 6.31 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(50 \mathrm{mg}), \mathrm{CuI}(50$ mg), $\mathrm{PPh}_{3}(50 \mathrm{mg})$ and $\mathrm{NEt}_{3}(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was heated at $80^{\circ} \mathrm{C}$ for 18 h . Due to the lower solubility of $\mathbf{4 f}$ in $\mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ after removal of NEt_{3}, and washed with water $(3 \times 100 \mathrm{~mL})$. The solution was dried over MgSO_{4} and the solvent of the filtrate was removed. The residue was subjected to chromatography on alumina. The yellow fraction was collected and crystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ gave 690 mg (74%) of $\mathbf{4 f}\left[R_{f}=0.67\right.$ (alumina, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)] as a white solid, mp 203$204{ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2205(\mathrm{C} \equiv \mathrm{C}), 1720(\mathrm{C}=\mathrm{O}), 1603,1434$, 1270, 1108, 828, 766, 695. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=$ $3.90(\mathrm{~s}, 6 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{dd}, J=7.2, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.73-7.78$ (m, 4 H), 7.85 (dd, $J=1.2, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ (dd, J $=1.2, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=52.0(+), 92.6,95.7,120.1,128.2,129.03,131.3,134.0,166.3$ (all $\mathrm{C}_{\text {quat }}$), 125.6, 129.01, 130.1, 131.1, 135.0 (all +). MS $(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}$ (\%): 444 (100) $\left[\mathrm{M}^{+}\right], 413$ (17) $\left[\mathrm{M}^{+}-\mathrm{OCH}_{3}\right], 385$ (14), 326 (55), 162 (19). Elemental analysis calcd. (\%) for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{4}$ (444.5): C 81.07, H 4.54; found: C 81.07, H 4.61. HRMS (EI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{4}$: 444.1362; found: 444.1350 .

General Procedure for the Formal $[(2+2)+2]$ Cycloaddition of Diynes 4 (or 27) with Alkynes 5 (GP2): A thick-walled screw-capped Pyrex bottle (or Schlenk tube) equipped with a magnetic stirring bar is charged with 0.50 mmol of the diyne 4 (or 27), $23.0 \mathrm{mg}(25.0 \mu \mathrm{~mol}$) of the Wilkinson's catalyst, 2.50 mmol of the respective alkyne $\mathbf{5}$ and 20 mL of p-xylene. Dry nitrogen is bubbled through the solution for 5 min . The sealed bottle (or Schlenk tube with a reflux condenser under nitrogen) is kept in an oil bath at $130(\text { or } 110)^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent is removed under reduced pressure and the residue is subjected to chromatography. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ affords the cycloadduct 9 (or 28).

7,8,9,10-Tetraphenylfluoranthene (9a): According to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol})$, alkyne $\mathbf{5 a}(446 \mathrm{mg}, 2.50$ mmol), Wilkinson's catalyst ($23 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and p-xylene (50 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ afforded $210 \mathrm{mg}(83 \%)$ of $\mathbf{9 a}$ $\left[R_{f}=0.63\left(\mathrm{SiO}_{2}\right.\right.$, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1)] as a bright yellow solid. ${ }^{1} \mathrm{H}$ NMR spectrum is identical to the reference. ${ }^{8 \mathrm{~b}}{ }^{13} \mathrm{C}$ NMR $(75.5 \mathrm{MHz}$, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=123.1,125.3,126.4,126.5,126.8,127.5$, 128.1, 130.0, 131.2 (all +), 129.5, 133.2, 136.41, 136.43, 137.1, 139.77, 139.79, 140.6 (all Cquat).

8,9-Bis(4-n-butylphenyl)-7,10-diphenylfluoranthene (9b): According to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol})$, alkyne $\mathbf{5 b}$ ($726 \mathrm{mg}, 2.50 \mathrm{mmol}$), Wilkinson's catalyst ($23 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and p-xylene (20 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 52 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) afforded $267 \mathrm{mg}(86 \%)$ of $\mathbf{9 b}\left[R_{f}=0.26\left(\mathrm{SiO}_{2}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)\right]$ as a bright yellow solid, $\mathrm{mp} 190-191^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2954,2855,1425$, $1021,826,775,700 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.82(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.06-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.43(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H})$,
$6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 12 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=13.8(+)$, 21.7, 33.2, 34.9 (all -), 123.0, 126.3, 126.5, 126.6, 127.5, 128.0, 130.1, $131.0($ all +), 129.5, 133.0, 136.2, 136.6, 137.0, 139.4, 140.0, 140.9 (all $\mathrm{C}_{\text {quat }}$). One $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. -MS (70 eV), m/z (\%): 618 (100) $\left[\mathrm{M}^{+}\right]$. Elemental analysis calcd (\%) for $\mathrm{C}_{48} \mathrm{H}_{42}$ (618.9): C 93.16, H 6.84; found: C 93.10, H 6.93. HRMS (EI) calcd for $\mathrm{C}_{48} \mathrm{H}_{42}$: 618.3287; found: 618.3278 .

7,10-Diphenyl-8,9-di-n-propylfluoranthene (9c): According to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol})$, alkyne $\mathbf{5 c}(276 \mathrm{mg}$, 2.50 mmol), Wilkinson's catalyst ($23 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $110^{\circ} \mathrm{C}$ for 36 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) afforded $218 \mathrm{mg}(99 \%)$ of 9c $\left[R_{f}=0.53\left(\mathrm{SiO}_{2}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1\right)\right]$ as a pale yellow solid, mp $240-242{ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=3055(\mathrm{C}-\mathrm{H})$, 2957, 2868, 1424, 1025, 773, 732, 701. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.81(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.56(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.55(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.77(\mathrm{~m}$, $4 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=14.6(+), 24.8,32.4($ all -$), 122.3,125.7,127.2$, $127.4,128.7,129.3($ all +), 135.2, 136.9, 137.8, 138.7, 140.7 (all C quat). Two $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), m / z (\%): 438 (100) $\left[\mathrm{M}^{+}\right], 409$ (31), 367 (100), 289 (17), 181 (11). Elemental analysis calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{30}$ (438.6): C 93.11, H 6.89; found: C 92.97, H 6.86. HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{30}$: 438.2348; found: 438.2345 .

8-(1-Hydroxy-1-methylethyl)-7,10-diphenylfluoranthene (9d): According to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol})$, alkyne 5d $(210 \mathrm{mg}, 2.50 \mathrm{mmol})$, Wilkinson's catalyst $(23.0 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ afforded $204 \mathrm{mg}(99 \%)$ of $9 \mathrm{~d}\left[R_{f}=0.50\left(\mathrm{SiO}_{2}\right.\right.$, hexane/ $\left.\left.\mathrm{Et}_{2} \mathrm{O} 1: 1\right)\right]$ as a colorless solid, mp $186{ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=3452(\mathrm{O}-\mathrm{H}), 3055(\mathrm{C}-\mathrm{H})$, $1425,1362,1162,824,722,699 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta \mathrm{ppm}$ $=1.55(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.33$ (m, 3 H), $7.45-7.70(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=32.7(+), 74.4\left(\mathrm{C}_{\text {quat }}\right), 122.7,123.3,126.4,126.5$, $127.0,127.4,127.6,127.7,127.9,128.6,128.9,129.1,130.3$ (all +), $129.5,133.0,135.0,135.2,135.6,136.8,137.6,139.7,141.0,141.1$, 145.6 (all C quat). MS (70 eV), m/z (\%): 412 (34) [M $\left.{ }^{+}\right], 397$ (53) [M^{+} $-\mathrm{CH}_{3}$], 394 (100) [$\left.\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 379$ (86) [$\left.\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right], 355$ (24), 302 (16), 188 (16). Elemental analysis calcd. (\%) for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}$ (412.5): C 90.26, H 5.86; found: C 89.99, H 5.85. HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}: 412.1827$; found: 412.1836 .

8,9-Dimethoxycarbonyl-7,10-diphenylfluoranthene (9e): According to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol})$, alkyne $\mathbf{5 e}$ ($355 \mathrm{mg}, 2.50 \mathrm{mmol}$), Wilkinson's catalyst ($23 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and p-xylene (20 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ afforded $233 \mathrm{mg}(99 \%)$ of $9 \mathbf{e}\left[R_{f}=0.19\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right)\right]$ as a colorless solid, mp $248{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): ~ v \mathrm{~cm}^{-1}=2952(\mathrm{C}-\mathrm{H}), 1743$ $(\mathrm{C}=\mathrm{O}), 1715(\mathrm{C}=\mathrm{O}), 1440,1426,1251,1220,1174,771 .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=3.59(\mathrm{~s}, 6 \mathrm{H}), 6.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{dd}, J=7.2, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.77(\mathrm{~m}, 10 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT) : $\delta \mathrm{ppm}=$ $52.1,124.4,127.6,127.7,128.1,128.5,129.0$ (all +), 129.5, 131.6, 133.2, 134.9, 136.0, 137.8, 139.1, 168.2 (all C quat). MS (70 eV), m / z
(\%): 470 (100) $\left[\mathrm{M}^{+}\right], 439$ (54) [$\left.\mathrm{M}^{+-} \mathrm{OCH}_{3}\right], 350$ (13), 219 (13), 175 (17). Elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{4}$ (470.5): C 81.69, H 4.71; found: C 81.79, H 4.62. HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{4}$: 470.1518; found: 470.1527.

7,8,10-Triphenylfluoranthene (9f): According to GP2, a mixture of diyne $4 \mathbf{a}(82 \mathrm{mg}, 0.25 \mathrm{mmol})$, alkyne $\mathbf{5 f}(128 \mathrm{mg}, 1.25 \mathrm{mmol})$, Wilkinson's catalyst ($12 \mathrm{mg}, 13.0 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min. The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 61 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1)$ afforded $103 \mathrm{mg}(96 \%)$ of $9 \mathrm{f}\left[R_{f}=\right.$ $0.24\left(\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)$] as a pale green solid, $\mathrm{mp} 198^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=1427,776,759,701 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta \mathrm{ppm}=6.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.41$ (m, 9 H$), 7.48-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=122.8,123.3,126.3,126.6,127.2$, $127.5,127.6,127.8,128.4,128.6,129.1,129.9,130.3,131.1$ (all +), $129.7,133.1,135.7,135.9,136.1,136.6,137.9,138.2,139.3,140.7$, 140.9 (all $\mathrm{C}_{\text {quat }}$). One $\mathrm{C}_{\text {quat }}$ and two CH cannot be observed due to the signals overlap. MS (70 eV), m/z (\%): $430(100)\left[\mathrm{M}^{+}\right], 353(8)\left[\mathrm{M}^{+}\right.$ $-\mathrm{C}_{6} \mathrm{H}_{5}$], 352 (13). Elemental analysis calcd. (\%) for $\mathrm{C}_{34} \mathrm{H}_{22}$ (430.5): C 94.85, H 5.15; found: C 94.83, H 5.37. HRMS (EI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{22}$: 430.1722 ; found: 430.1716 .

8-(4-n-Butylphenyl)-9-(4-tert-butylphenyl)-7,10-diphenylfluoranthene $\mathbf{(9 \mathrm { g })}$: According to GP2, a mixture of diyne $\mathbf{4 a}(82 \mathrm{mg}, 0.25$ mmol), alkyne 5 g ($363 \mathrm{mg}, 1.25 \mathrm{mmol}$), Wilkinson's catalyst (12 mg , $13.0 \mu \mathrm{~mol})$ and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 53 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane and hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1)$ afforded $132 \mathrm{mg}(85 \%)$ of $\mathbf{9 g}\left[R_{f}=0.29\left(\mathrm{SiO}_{2}\right.\right.$, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 10:1)] as a yellow solid, mp $242{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=$ 2956 (C-H), 2859, 1426, 775, 765, 700. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.11$ $(\mathrm{s}, 9 \mathrm{H}), 1.34-1.41(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.59-6.67(\mathrm{~m}$, $4 \mathrm{H}), 6.74-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 12 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=13.9,31.2\left(\right.$ all +), 21.7, 33.4, $34.1($ all -$), 35.0\left(\mathrm{C}_{\text {quat }}\right), 123.1$, $123.3,126.3,126.6,126.7,127.6,128.1 \times 2,130.2,130.9,131.1$ (all $+), 129.6,133.3,136.3,136.7,136.8,137.2 \times 2,139.4,140.0,140.1$, $141.0,141.1,147.9\left(\right.$ all $\left.C_{q u a t}\right)$. Three $C_{\text {quat }}$ and five CH cannot be observed due to signal overlap or too weak. MS (70 eV), m/z (\%): 618 (100) $\left[\mathrm{M}^{+}\right], 603$ (13), 561 (18) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right]$. Elemental analysis calcd. (\%) for $\mathrm{C}_{48} \mathrm{H}_{42}$ (618.9): C 93.16, H 6.84; found: C 93.19, H 7.05. HRMS (EI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{42}: 618.3287$; found: 618.3281 .

7,10-Bis(4-n-butylphenyl)-8,9-diphenylfluoranthene (9i): According to GP2, a mixture of diyne $\mathbf{4 b}(110 \mathrm{mg}, 0.25 \mathrm{mmol})$, alkyne 5a ($223 \mathrm{mg}, 1.25 \mathrm{mmol}$), Wilkinson's catalyst ($12 \mathrm{mg}, 13.0 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 58 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane and hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10: 1) afforded $119 \mathrm{mg}(85 \%)$ of $9 \mathbf{i}\left[R_{f}=0.21\left(\mathrm{SiO}_{2}\right.\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10$: 1)] as a pale green solid, $\mathrm{mp} 209-210^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=2955$ $(\mathrm{C}-\mathrm{H}), 2928,1426,826,775,700 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $\mathrm{ppm}=0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{sext}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-$ $1.67(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.81-6.92 (m, 10 H$), 7.09-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.27-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=13.9(+), 22.0,33.4,35.2($ all -$), 123.1,125.1$, 126.2, 126.4, 127.5, 128.1, 129.8, 131.3 (all +), 129.5, 133.2, 136.5, $136.6,136.9,137.1,140.0,140.6,141.2$ (all C Cuat). MS (70 eV), m / z (\%): $618(100)\left[\mathrm{M}^{+}\right], 561(6)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right]$. Elemental analysis calcd.
(\%) for $\mathrm{C}_{48} \mathrm{H}_{42}$ (618.9): $\mathrm{C} 93.16, \mathrm{H} 6.84$; found: C 93.09 , H 7.03 . HRMS (EI) calcd for $\mathrm{C}_{48} \mathrm{H}_{42}$: 618.3287; found: 618.3273 .

7,8,9,10-Tetrakis(4-n-butylphenyl)fluoranthene (9j): According to GP2, a mixture of diyne $\mathbf{4 b}$ ($110 \mathrm{mg}, 0.25 \mathrm{mmol}$), alkyne $\mathbf{5 b}$ (363 mg , 1.25 mmol), Wilkinson's catalyst ($12 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 57 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) afforded $136 \mathrm{mg}(75 \%)$ of $\mathbf{9} \mathbf{j}\left[R_{f}=0.32\left(\mathrm{SiO}_{2}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)\right]$ as a yellow solid, mp $92-93{ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2955,2926,2855,1515,1457,1426$, 1377, 826, 776, 554. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.82(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.12$ (sext, $J=7.5 \mathrm{~Hz}, 4$ H), $1.25-1.42(\mathrm{~m}, 8 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4$ H), $2.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.62-6.68(\mathrm{~m}, 6 \mathrm{H}), 6.72-6.75(\mathrm{~m}, 4$ H), $7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2$ $\mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=13.9,14.0($ all +), 21.8, 22.1, 33.3, 33.5, 35.1, 35.4 (all -), 123.1, 126.2, 126.5, 127.5, 128.1, 129.6, 131.2 (all +), 130.0, $133.3,136.4,136.9,137.3,137.4,139.2,141.0$ (all $\mathrm{C}_{\text {quat }}$). Two $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), m/z (\%): 730 (100) $\left[\mathrm{M}^{+}\right], 673$ (6) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right]$. Elemental analysis calcd. (\%) for $\mathrm{C}_{56} \mathrm{H}_{58}$ (731.1): C 92.00, H 8.00; found: C 92.02, H 8.16. HRMS (EI) calcd. for $\mathrm{C}_{56} \mathrm{H}_{58}$: 730.4539; found: 730.4544 .

7,10-Bis(4-n-butylphenyl)-8-trimethylsilylfluoranthene (9k): According to GP2, a mixture of diyne 4b ($397 \mathrm{mg}, 0.90 \mathrm{mmol}$), alkyne $5 \mathbf{i}(442 \mathrm{mg}, 4.50 \mathrm{mmol})$, Wilkinson's catalyst ($42 \mathrm{mg}, 45.0 \mu \mathrm{~mol}$) and p-xylene (40 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130^{\circ} \mathrm{C}$ for 84 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) afforded $485 \mathrm{mg}(99 \%)$ of $9 \mathbf{k}\left[R_{f}=0.58\left(\mathrm{SiO}_{2}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)\right]$ as a yellow solid, mp 137-138 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2956,2929,2857,1428$, $1247,865,835,776 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta \mathrm{ppm}=0.05(\mathrm{~s}$, $9 \mathrm{H}), 1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.39-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 4$ H), 2.74-2.81 (m, 4 H$), 6.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 9$ H), $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{dd}, J=0.9, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=0.7,14.0 \times 2($ all +), 22.2, 22.5, 33.7, 33.8, 35.5, 35.6 (all -), 123.0, 123.2, 126.1, 126.6, 127.3, 127.6, 128.5, 128.6, $129.0,129.8,135.5($ all +), 129.6, 132.9, 136.3, $137.0 \times 2,137.1$, $137.4,138.6,138.7,138.9,142.3,142.4,143.6$ (all C quat). MS (70 eV), $\mathrm{m} / \mathrm{z}(\%): 538$ (100) $\left[\mathrm{M}^{+}\right], 523$ (85) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 507$ (10), 451 (17). Elemental analysis calcd (\%) for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{Si}$ (538.8): C 86.93, H 7.86; found: C 87.09, H 7.97. HRMS (EI) calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{Si}$: 538.3056; found: 538.3056 .

7,10-Bis(4-tert-butylphenyl)-8,9-diphenylfluoranthene (91): According to GP2, a mixture of diyne $\mathbf{4 c}(110 \mathrm{mg}, 0.25 \mathrm{mmol})$, alkyne $\mathbf{5 a}(223 \mathrm{mg}, 1.25 \mathrm{mmol})$, Wilkinson's catalyst ($12 \mathrm{mg}, 13.0 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 54 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane and hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(10$: 1) afforded $128 \mathrm{mg}(83 \%)$ of $91\left[R_{f}=0.21\left(\mathrm{SiO}_{2}\right.\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10$: 1)] as a pale green solid, $\mathrm{mp} 347-348^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=2958$ $(\mathrm{C}-\mathrm{H}), 2865,1116,827,776,704 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $\mathrm{ppm}=1.33(\mathrm{~s}, 18 \mathrm{H}), 6.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.90(\mathrm{~m}, 10$ $\mathrm{H}), 7.20-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=31.3(+), 34.4\left(\mathrm{C}_{\text {quat }}\right)$, 123.1, $124.8,125.1,126.2,126.4,127.5,129.6,131.3$ (all +), 133.2, $136.6 \times$ $2,136.7,137.1,140.0,140.7,149.6$ (all $\left.C_{q u a t}\right)$. One $C_{q u a t ~}$ cannot be observed due to signal overlap. MS (70 eV), $m / z(\%): 618(100)\left[\mathrm{M}^{+}\right]$, 294 (17). Elemental analysis calcd. (\%) for $\mathrm{C}_{48} \mathrm{H}_{42}$ (618.9): C 93.16,

H 6.84; found: C 93.19, H 6.84. HRMS (EI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{42}$: 618.3287; found: 618.3296.

8-(4-n-Butylphenyl)-7,9,10-tris(4-tert-butylphenyl)fluoranthene (9m): According to GP2, a mixture of diyne $\mathbf{4 c}(110 \mathrm{mg}, 0.25 \mathrm{mmol})$, alkyne $\mathbf{5 g}(363 \mathrm{mg}, 1.25 \mathrm{mmol})$, Wilkinson's catalyst ($12 \mathrm{mg}, 13.0$ $\mu \mathrm{mol})$ and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 56 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$: 1) afforded $157 \mathrm{mg}(86 \%)$ of $\mathbf{9 m}\left[R_{f}=0.22\left(\mathrm{SiO}_{2}\right.\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 10:1)] as a pale green solid, mp $197-198^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=$ $2959(\mathrm{C}-\mathrm{H}), 826,774 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.80$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.42(\mathrm{~m}$, $2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 2.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.67$ $(\mathrm{m}, 3 \mathrm{H}), 6.73-6.78(\mathrm{~m}, 5 \mathrm{H}), 6.83-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 10$ H), $7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=13.8(+), 21.5,33.4,34.9($ all -$), 31.1,31.3 \times 2$ (all +), 34.0, 34.4 (all C quat), 122.97, 123.01 $\times 2,124.6,124.7,126.1$, $126.4,127.5,129.6 \times 2,130.9,131.1($ all +), 129.5, 133.2, 136.1, $136.3,136.8,136.9,137.0,137.2,137.3,139.1,140.9,141.1,147.5$, $149.4 \times 2\left(\right.$ all $\left.\mathrm{C}_{\text {quat }}\right)$. Four $\mathrm{C}_{\text {quat }}$ and two CH cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%): 730(100)\left[\mathrm{M}^{+}\right]$. Elemental analysis calcd. (\%) for $\mathrm{C}_{56} \mathrm{H}_{58}$ (731.1): C 92.00, H 8.00; found: C 92.16, H 8.15. HRMS (EI) calcd. for $\mathrm{C}_{56} \mathrm{H}_{58}$: 730.4539; found: 730.4537.

7-Pentafluorophenyl-8,9,10-triphenylfluoranthene (9n): According to GP2, a mixture of diyne $\mathbf{4 d}(105 \mathrm{mg}, 0.25 \mathrm{mmol})$, alkyne 5a ($223 \mathrm{mg}, 1.25 \mathrm{mmol}$), Wilkinson's catalyst ($12 \mathrm{mg}, 13.0 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $130{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20: 1)$ afforded $116 \mathrm{mg}(77 \%)$ of $\mathbf{9 n}\left[R_{f}=0.27\left(\mathrm{SiO}_{2}\right.\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)\right]$ as a pale orange solid, $\mathrm{mp} 304^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): ~ v \mathrm{~cm}^{-1}=1522,1494,988,700$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.92(\mathrm{~m}, 5 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 5 \mathrm{H}), 7.27-$ $7.34(\mathrm{~m}, 6 \mathrm{H}), 7.44(\mathrm{dd}, J=6.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta=114.5\left(\mathrm{C}_{\text {quat }}, \mathrm{dd}, J=3.1,20.6 \mathrm{~Hz}\right), 121.0,123.7,125.7$, 126.6, 126.7, 126.9, 127.1, 127.2, 127.5, 127.7, 128.0, 128.2, 129.5, $129.8,130.9$ (all +) , 120.2, 133.1, 135.2, 136.0, 137.1, 137.3, 138.9, $139.1,141.2,141.8,142.4(\mathrm{~m}), 145.6(\mathrm{~m})$ (all C Cquat). Four $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap or too weak. ${ }^{19} \mathrm{~F}$ NMR $(282.4 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=-162.8(\mathrm{~m}, 2 \mathrm{~F}),-155.2(\mathrm{t}, J=20.9 \mathrm{~Hz}, 1 \mathrm{~F})$, $-139.0(\mathrm{dd}, J=8.2,23.4 \mathrm{~Hz}, 2 \mathrm{~F}) . \mathrm{MS}(70 \mathrm{eV}), m / z(\%): 596$ (100) [M^{+}]. HRMS (EI) calcd for $\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{~F}_{5}$: 596.1563; found: 596.1558.

7,10-Bis(2-bromophenyl)-8,9-di-n-propylfluoranthene (90) and two cyclization adducts: According to GP2, a mixture of diyne $\mathbf{4 d}$ ($243 \mathrm{mg}, 0.50 \mathrm{mmol}$), alkyne 5c ($276 \mathrm{mg}, 2.50 \mathrm{mmol}$), Wilkinson's catalyst ($23 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $110{ }^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent is removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) afforded 247 mg (ca. 83%) of $\mathbf{9 0}$ and two cyclization adducts [ratio range from 97:3:0 to 89:7:4 over several runs; $R_{f}=0.65\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane $\left.\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1\right)\right]$ as a pale yellow solid, mp 227$230{ }^{\circ} \mathrm{C} . \operatorname{MS}(70 \mathrm{eV}), m / z(\%): 599 / 598 / 597 / 596 / 595 / 594$ (18/54/37/ 100/20/51) [M^{+}of 90], 516 (11) [M^{+}- Br], 489/488/487/486 (20/57/ 23/54) [M^{+}of two cyclization products], 460 (26), 377 (31), 365 (18), 188 (14), 182 (13). 90: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.82$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.38-1.65(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.54-$ 2.67 (m, 2 H), $6.25(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.38-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}$,
$J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}$ $=14.6,14.7(\mathrm{all}+), 24.1,24.3,32.4,32.6$ (all -), 121.6, 125.9, 126.0, 127.62, 127.66, 129.11, 129.13, 131.2, 131.6, 133.0, 133.2 (all +), $124.3,124.6,129.6,132.7,135.1,135.3,136.62,136.65,138.8,141.2$ (all $\mathrm{C}_{\text {quat }}$). Six $\mathrm{C}_{\text {quat }}$ and three CH cannot be observed due to signal overlap. HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Br}_{2}$: 594.0558 ; found: 594.0563 .

7,10-Bis(4-tert-butylphenyl)fluoranthene (13b) and 3,6-Bis(4-tert-butylphenyl)tetracyclo-[5.4.0.0 $\left.{ }^{2,9} .0^{8,10}\right]$ undec-3,5-dieno $[4,5-d]$ acenaphthylene (14b): Variant A: According to GP2, a mixture of diyne 4b ($221 \mathrm{mg}, 0.50 \mathrm{mmol}$), NBD ($1 \mathrm{~mL}, 9.22 \mathrm{mmol}$), Wilkinson's catalyst $(23 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The mixture was kept in an oil bath under nitrogen at $130^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane afforded 87 mg of pure 13b, a mixture (168 mg) of $\mathbf{1 3 b}$ and $\mathbf{1 4 b}$ and 21 mg of pure $\mathbf{1 4 b}$.

Variant B: Analogous to GP2, a mixture of diyne $\mathbf{4 b}$ ($110 \mathrm{mg}, 0.25$ $\mathrm{mmol}), \mathrm{NBD}(0.5 \mathrm{~mL}, 4.61 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(3.10 \mathrm{mg}, 6.29 \mu \mathrm{~mol})$ and p-xylene (10 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The sealed bottle was kept in an oil bath at $90^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina (II). Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10:1) afforded $107 \mathrm{mg}(92 \%)$ of 13b.

13b: a pale yellow crystal, $\mathrm{mp} 275-278{ }^{\circ} \mathrm{C}, R_{f}=0.80$ (alumina, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$). IR $(\mathrm{KBr}): ~ v \mathrm{~cm}^{-1}=3049(\mathrm{C}-\mathrm{H}), 2960,1479$, 1361, 1266, 1112, 824, 773, 563. ${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $\mathrm{ppm}=1.44(\mathrm{~s}, 18 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=0.8, J=7.2 \mathrm{~Hz}, 2$ H), $7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.70 (dd, $J=0.8, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$). $-{ }^{13} \mathrm{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=31.5(+), 34.7\left(\mathrm{C}_{\text {quat }}\right), 122.9$, 125.4, 126.5, 127.4, 128.6, 129.2, (all +), 129.7, 132.7, 136.4, 136.8, 137.7, 137.9, 150.6 (all Cquat). MS (70 eV), $m / z(\%): 466$ (100) $\left[\mathrm{M}^{+}\right]$, 451 (34) [$\left.\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 218$ (19), 190 (12), 86 (11), 84 (17). Elemental analysis calcd. (\%) for $\mathrm{C}_{36} \mathrm{H}_{34}$ (466.7): C 92.66, H 7.34; found: C 92.24, H 7.23. HRMS (EI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{34}$: 466.2700; found: 466.2656.

14b: a pale yellow crystal, $\mathrm{mp} 318-320^{\circ} \mathrm{C}, R_{f}=0.75$ (alumina, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1). IR $(\mathrm{KBr}): ~ v \mathrm{~cm}^{-1}=2960(\mathrm{C}-\mathrm{H}), 1505,1362$, $1268,802,776 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.92(\mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 1.55(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (dd, $J=1.8, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (dd, $J=1.8, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=2.1, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (dd, $J=2.1, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=8.8,20.6,31.5,33.2,55.5($ all +$), 35.1\left(\mathrm{C}_{\text {quat }}\right), 35.8$ $(-), 119.4,123.4,126.7,126.9,127.3,127.5,127.9$ (all +), 131.2, 133.4, 139.8, 143.2, 144.0, 150.5 (all $\mathrm{C}_{\text {quat }}$). One $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), $m / z(\%)$: $532(100)\left[\mathrm{M}^{+}\right]$, 440 (21), 57 (14) $\left[\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}\right]$. HRMS (EI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{40}: 532.3130$; found: 532.3119.

7-Phenyl-10-pentafluorophenylfluoranthene (13c) and 3-Phenyl-6-pentafluorophenyltetracyclo-[5.4.0.0 $\left.{ }^{2,9} .0^{8,10}\right]$ undec-3,5-dieno[4,5d]acenaphthylene (14c): According to GP2, a mixture of diyne 4d ($209 \mathrm{mg}, 0.50 \mathrm{mmol}$), NBD ($1 \mathrm{~mL}, 9.22 \mathrm{mmol}$), Wilkinson's catalyst $(23 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The mixture was kept in an oil bath at $130^{\circ} \mathrm{C}$ under nitrogen for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane afforded 37 mg of pure 13c, a mixture of $\mathbf{1 3 c}$ and $\mathbf{1 4 c}(123 \mathrm{mg}$; ratio ca. 1:1) and a mixture of $\mathbf{1 3 c}$ and $\mathbf{1 4 c}(38 \mathrm{mg}$; ratio ca. 1: 10$)$.

13c: a pale yellow crystal, $\mathrm{mp}>350^{\circ} \mathrm{C}, R_{f}=0.70$ (alumina, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1). IR (KBr): $v \mathrm{~cm}^{-1}=3058(\mathrm{C}-\mathrm{H}), 1649,1521,1491$, $1080,990,774,706 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.2, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $J=7.2, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 2$ H), $7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta=121.2,123.5,127.0,127.5,127.7$, 127.8, 128.0, 128.6, 128.9, 129.36, 129.39 (all +), 120.0, 129.8, 132.5, 135.1, 135.7, 137.4, 138.3, 139.9, 140.2 (all C C quat). ${ }^{19} \mathrm{~F}$ NMR (282.4 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=-162.3(\mathrm{dt}, J=8.5, J=22.9 \mathrm{~Hz}, 2 \mathrm{~F})$, $-155.3(\mathrm{t}, J=22.2 \mathrm{~Hz}, 1 \mathrm{~F}),-140.3$ (dd, $J=8.5,23.2 \mathrm{~Hz}, 2 \mathrm{~F})$. Four $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap or too weak. MS (70 $\mathrm{eV}), m / z$ (\%): 445/444/443 (11/100/15) [M $\left.{ }^{+}\right]$. HRMS (EI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{13} \mathrm{~F}_{5}$: 444.0937; found: 444.0923.

14c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.96(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1$ $\mathrm{H}), 1.58(\mathrm{~s}, 2 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 2 \mathrm{H})$, $5.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.5$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=8.2,19.9,20.8,32.7$ (all +), $35.3(-)$, 53.7, 55.0, 117.7, 120.3, 123.3, 124.7, 127.1, 127.29, 127.33, 127.5, 127.6, 129.4, 129.7 (all +), 130.8, 132.3, 137.5, 137.9, 138.6, 145.1, 145.8 (all $\mathrm{C}_{\text {quat }}$). ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=-161.6$ (m, 2 F) , -156.7 (t, $J=20.9 \mathrm{~Hz}, 1 \mathrm{~F}),-141.9$ (m, 2 F). Eight C $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap or too weak. MS (70 eV), $m / z(\%): 510(100)\left[\mathrm{M}^{+}\right.$of $\left.\mathbf{1 4 c}\right], 444$ (24) [M^{+}of $\left.\mathbf{1 3 c}\right]$. HRMS (EI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{19} \mathrm{~F}_{5}$: 510.1407; found: 510.1379 .

7,10-Bis(2-bromophenyl)fluoranthene (13d) and 3,6-Bis(2-bromophenyl)tetracyclo $\left[5.4 .0 .0^{2,9} .0^{8,10}\right]$-undec-3,5-dieno[4,5- d]acenaphthylene (14d): Variant A: According to GP2, a mixture of diyne 4e ($243 \mathrm{mg}, 0.50 \mathrm{mmol}$), NBD ($1.0 \mathrm{~mL}, 9.22 \mathrm{mmol}$), Wilkinson's catalyst $(23.0 \mathrm{mg}, 25.0 \mu \mathrm{~mol})$ and p-xylene (20 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The mixture was kept in an oil bath at $110^{\circ} \mathrm{C}$ under nitrogen for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:1 to 1:2) afforded 201 mg (ca. 78\%) of 13d, 14d and intramolecular cyclization adduct (ratio ca. 100:2:2) as an inseparable mixture. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 d}$ is identical to ref 38 .

7,10-Bis(4-methoxylcarbonylphenyl)fluoranthene (13e) and 3,6-$\operatorname{Bis}(4-m e t h o x y l c a r b o n y l p h e n y l)$-tetracyclo[5.4.0.0 $\left.{ }^{2,9} .0^{8,10}\right]$ undec-3,5dieno $[4,5-d]$ acenaphthylene (14e): Variant A: According to GP2, a mixture of diyne $\mathbf{4 f}$ ($111 \mathrm{mg}, 0.25 \mathrm{mmol}$), NBD ($0.5 \mathrm{~mL}, 4.61 \mathrm{mmol}$), Wilkinson's catalyst ($11.5 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 \min. The mixture was kept in an oil bath at $80^{\circ} \mathrm{C}$ under nitrogen for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:1 to 1:2) afforded $115 \mathrm{mg}(95 \%)$ of $\mathbf{1 3 e}$ and 14e as an inseparable mixture (ratio 63:37).

Variant B: According to GP2, a mixture of diyne $\mathbf{4 f}(111 \mathrm{mg}, 0.25$ $\mathrm{mmol}), \mathrm{NBD}(0.5 \mathrm{~mL}, 4.61 \mathrm{mmol}),[\mathrm{RhCl}(\mathrm{COD})]_{2}(3.1 \mathrm{mg}, 6.25 \mu \mathrm{~mol})$ and p-xylene (10 mL) in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The mixture was kept in an oil bath at $80^{\circ} \mathrm{C}$ under nitrogen for 60 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2) afforded 116 mg (99%) of 13 e .

13e: a white solid, $\mathrm{mp} 259-260^{\circ} \mathrm{C}, R_{f}=0.30$ (alumina, hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right)$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=2952(\mathrm{C}-\mathrm{H}), 1720(\mathrm{C}=\mathrm{O}), 1607$, 1437, 1276, 1115, 829, 780, 769, 707. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=4.02(\mathrm{~s}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.36$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.73-7.79(\mathrm{~m}, 6 \mathrm{H}), 8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=52.1,123.1,127.1$, 127.5, 128.7, 129.1, 129.9 (all +), 129.6, 129.8, 132.6, 135.5, 136.7, 137.2, 145.5, 166.9 (all Cquat). MS (70 eV), m / z (\%): 470 (100) [$\left.\mathrm{M}^{+}\right]$, 352 (10). Elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{4}$ (470.5): C 81.69, H 4.71; found: C 81.46, H 4.75. HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{4}$: 470.1518; found: 470.1528 .

14e: A mixture of 13 e and 14 e was obtained as a yellow solid. 14 e : ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.96(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ ($\mathrm{s}, 2 \mathrm{H}$), $1.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 4.00$ $(\mathrm{s}, 6 \mathrm{H}), 5.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}$, $J=2.7, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{dd}, J=1.5, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.16$ $(\mathrm{dd}, J=1.5, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{dd}, J=2.7, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=8.4,20.2,33.2$, 52.0, 54.7 (all +), $35.2(-), 120.1,123.5,127.1,127.76,128.1,130.8$, $131.1($ all +) , 128.9, 130.75, 133.1, 137.5, 138.4, 141.7, 151.1, 166.9 (all $\mathrm{C}_{\text {quat }}$). MS (70 eV), m/z (\%): 536 (22) $\left[\mathrm{M}^{+}\right.$of 14e], 470 (100) [M^{+}of 13e]. HRMS (EI) calcd. for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{O}_{4}$: 536.1988; found: 536.1996.

6a,14a-dihydro-7,14-diphenylacenaphtho[1,2-k]fluoranthene (15) and 7,14-diphenylacenaphtho-[1,2-k]fluoranthene (16): Similar to GP2, a mixture of diyne $\mathbf{4 a}(164 \mathrm{mg}, 0.50 \mathrm{mmol}), 6[381 \mathrm{mg}(75 \%$ purity), 2.50 mmol$]$, Wilkinson's catalyst ($23.0 \mathrm{mg}, 5.00 \mu \mathrm{~mol}$) and p-xylene $(20 \mathrm{~mL})$ in a Pyrex bottle at ambient temperature was purged with nitrogen for 5 min . The mixture was kept in an oil bath at $130^{\circ} \mathrm{C}$ under nitrogen for 46 h . After cooling to room temperature and removal of the solvent, the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $7: 1$ to $4: 1$) afforded an inseparable mixture (ratio ca. 10:1) of $\mathbf{1 5}$ and $\mathbf{1 6}$ [182 mg (ca. 75\%); $R_{f}=0.24$ (SiO_{2}, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1$)] as a yellow solid. 15: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=5.28(\mathrm{~s}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=7.2, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=6.9$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.65(\mathrm{~m}, 10 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$. Due to the lower solubility and stability of 15, the ${ }^{13} \mathrm{C}$ NMR spectrum could not be recorded. MS $(70 \mathrm{eV}), m / z$ (\%): 480 (100) [M^{+}of 15], 478 (70) [M^{+}of 16], 403 (37), 326 (12), 206 (19). HRMS (EI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{24}$: 480.1878; found: 480.1851. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 6}$ is identical to the reference, ${ }^{8 \mathrm{~b}}$ but the integration of the signal at 6.67 ppm should be 4 H , instead of 2 H .

3-Bromo-11-(2-bromophenyl)benzo[j]fluoranthene (23): A mixture of $\mathbf{4 e}(243 \mathrm{mg}, 0.50 \mathrm{mmol})$ and p-xylene $(20 \mathrm{~mL})$ in a screwcapped Pyrex bottle was purged with nitrogen for 5 min and the sealed bottle was kept in an oil bath at $110^{\circ} \mathrm{C}$ for 60 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was washed with hexane $(5 \times 5 \mathrm{~mL})$ to give 23 (170 $\mathrm{mg},=70 \%)$ as a yellow-brown solid, mp $249-252{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v$ $\mathrm{cm}^{-1}=3053(\mathrm{C}-\mathrm{H}), 1567,1471,1432,1026,876,760,728 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=6.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.92$ $(\mathrm{m}, 11 \mathrm{H}), 8.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=121.4,123.8,129.4,131.0,131.77$, 131.81, 133.2, 135.7, 135.8, 136.3, 136.6, 141.1 (all C quat), 123.7, 124.2, $126.5,127.4,127.56,127.6,127.90,127.94,128.6,128.9,129.6,130.8$, 131.0, 132.9 (all +). MS (70 eV), $m / z(\%): 489 / 488 / 487 / 486 / 485 / 484$ (12/44/24/85/12/ 41) [$\left.\mathrm{M}^{+}\right], 406$ (11) [M^{+}- Br], 326 (100) [$\mathrm{M}^{+}-$ Br_{2}], 163 (57). HRMS (EI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Br}_{2}$: 483.9462; found: 483.9459.

General Procedure for Preparation Diynes 27 (GP3): A solution of dichloride $25(0.50 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{IPr} \bullet \mathrm{HCl}$ $(85 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $t \mathrm{BuOK}(22.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ or $\mathrm{NEt}_{3}(1 \mathrm{~mL}$, in the case of ester) in DME (10 mL) in a Schlenk tube is heated at 50 ${ }^{\circ} \mathrm{C}$ under nitrogen for 30 min . Then, trimethyltin substituted alkyne 26 is added to the above solution and the mixture is refluxed at $110^{\circ} \mathrm{C}$ under nitrogen for 3 d . After cooling to room temperature, the solvent is removed under reduced pressure. The residue is subjected to chromatography on silica gel (or alumina). Elution with hexane/ CH_{2} Cl_{2} affords the coupling product 27 in an acceptable purity.

2,3-Bis(phenylethynyl)corannulene (27a): According to GP3, a solution of dichloride $\mathbf{2 5 a}(159 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}$, $0.10 \mathrm{mmol}), \mathrm{IPr} \bullet \mathrm{HCl}(85.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $t \mathrm{BuOK}(22.4 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in DME (10 mL) was heated at $50^{\circ} \mathrm{C}$ under nitrogen for 30 min. Then, alkyne 26a was added to the above solution and the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 3 d . After removal of the solvent, the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ CH_{2} -
Cl_{2} (from 15:1 to 5:1) afforded $75.0 \mathrm{mg}(33 \%)$ of $\mathbf{2 7 a}\left[R_{f}=0.32\left(\mathrm{SiO}_{2}\right.\right.$, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 3:1] as a brown semisolid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=7.08-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2$ H). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=89.5,94.3$, $121.1,123.5,129.8,130.9,134.3,134.5,135.4$ (all C quat), 126.2, 127.2, $127.6,127.96,127.98,131.8,133.9\left(\right.$ all +). One $C_{q u a t}$ was not observed due to signal overlap. MS (70 eV), $m / z(\%): 450(100)\left[\mathrm{M}^{+}\right], 338$ (34), 224 (30). HRMS (EI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{18}: 450.1409$; found: 450.1392 .

2,3-Bis(1-pentynyl)corannulene (27b): According to GP3, a solution of dichloride $\mathbf{2 5 a}(450 \mathrm{mg}, 1.42 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(64.0 \mathrm{mg}, 0.29$ mmol), $\mathrm{IPr} \cdot \mathrm{HCl}(241 \mathrm{mg}, 0.57 \mathrm{mmol})$ and $t \mathrm{BuOK}(64.0 \mathrm{mg}, 0.57 \mathrm{mmol})$ in DME (15 mL) was heated at $50^{\circ} \mathrm{C}$ under nitrogen for 30 min . Then, alkyne 26b was added to the above solution and the mixture was refluxed at $110{ }^{\circ} \mathrm{C}$ for 3 d . After removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $8: 1$ to $3: 1$) afforded $183 \mathrm{mg}(34 \%)$ of $\mathbf{2 7 b}$ as a pale yellow oil, $R_{f}=0.15\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.74(\mathrm{sext}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 2.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 2$ $\mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=13.7(+), 22.2,22.3($ all -$), 80.5,95.1$, $122.1,128.3,129.9,130.8,134.3,135.5$ (all $\left.\mathrm{C}_{\text {quat }}\right), 126.2,127.0,127.4$, $133.2\left(\right.$ all +). One $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), m/z (\%): 382 (100) [$\left.\mathrm{M}^{+}\right], 353$ (62) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right], 337$ (57), 322 (16), 162 (14), 149 (10), 60 (12). HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{22}$: 382.1722; found: 382.1709 .

1,2-Dimethoxycarbonyl-6,7-bis(phenylethynyl)corannulene (27c): According to GP3, a solution of dichloride $\mathbf{2 5 b}(217 \mathrm{mg}, 0.50 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(85.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1 \mathrm{~mL})$ in DME (10 mL) was heated at $50^{\circ} \mathrm{C}$ under nitrogen for 30 min . Then, alkyne 26a was added to the above solution and the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 62 h . After removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $1: 1$ to $1: 2$) afforded $185 \mathrm{mg}(65 \%)$ of $\mathbf{2 7} \mathrm{c}\left[R_{f}=\right.$ $0.54\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right]$ as a brown oil in an acceptable purity. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=4.05(\mathrm{~s}, 6 \mathrm{H}), 7.12-7.28(\mathrm{~m}$, $6 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): δ ppm $=52.9(+), 89.0,95.3,122.7,123.3,127.2,130.7,131.8,133.7$, 167.5 (all C quat), $127.4,127.8,128.0,128.3,131.9,133.9$ (all +). Three $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), $m / z(\%)$: 566 (100) $\left[\mathrm{M}^{+}\right], 520$ (12), 448 (29), 224 (13). HRMS (EI) calcd for $\mathrm{C}_{40} \mathrm{H}_{22} \mathrm{O}_{4}$: 566.1518; found: 556.1502 .

1,2-Dimethoxycarbonyl-6,7-bis(1-pentynyl)corannulene (27d): According to GP3, a solution of dichloride $\mathbf{2 5 b}(217 \mathrm{mg}, 0.50 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{IPr} \bullet \mathrm{HCl}(85.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1 \mathrm{~mL})$ in DME $(10 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ under nitrogen for 30 min . Then, alkyne 26b was added to the above solution and the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 2.5 d . After removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $3: 1$ to $3: 2$) afforded $141 \mathrm{mg}(57 \%)$ of $\mathbf{2 7 d}\left[R_{f}=\right.$ $0.31\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)$] as a yellow-brown semisolid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.75$ (sext, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 7.73$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=14.2(+), 22.65,24.74$ (all -), $53.3(+), 80.7,96.8,123.9,127.3,129.0,131.2,132.0,133.8$, $135.5,136.0,167.9$ (all Cquat), 127.5, 128.0, 133.7 (all +). MS (70 $\mathrm{eV}), m / z(\%): 498$ (100) $\left[\mathrm{M}^{+}\right], 469$ (37), 437 (42), 350 (39), 337 (56), 322 (59), 205 (38), 168 (53), 162 (76), 155 (64).

1-Methoxycarbonyl-2-phenyl-6,7-bis(1-phenylethynyl)corannulene (27e): According to GP3, a solution of dichloride 25c (160 mg , $0.35 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(16.0 \mathrm{mg}, 71.3 \mu \mathrm{~mol}), \mathrm{IPr} \bullet \mathrm{HCl}(60.0 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ and $\mathrm{NEt}_{3}(1 \mathrm{~mL})$ in DME $(10 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ under
nitrogen for 30 min . Then, alkyne 26a was added to the above solution and the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 3 d . After removal of the solvent, the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 2)$ afforded $87.0 \mathrm{mg}(42 \%)$ of $27 \mathrm{e}\left[R_{f}\right.$ $=0.56\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right]$ as a yellow-brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=3.69(\mathrm{~s}, 3 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.22-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=52.0(+), 89.2,94.6,94.7,121.6,122.2,123.2,123.3,128.7$, 129.2, 129.4, 129.7, 130.5, 134.1, 134.2, 134.3, 135.0, 135.7, 137.8, 141.9, 168.7 (all C quat), 126.9, 127.0, 127.1, 127.9, 128.0, 128.1, 129.8, 131.8, 133.7, 133.9 (all +). Two $\mathrm{C}_{\text {quat }}$ and two CH signals cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), m / z(\%): 584(100)\left[\mathrm{M}^{+}\right]$, 524 (36), 275 (13), 261 (42), 149 (29). HRMS (EI) calcd. for $\mathrm{C}_{44} \mathrm{H}_{24} \mathrm{O}_{2}$: 584.1776; found: 584.1788.

9,10,11,12-Tetraphenylindenocorannulene (28a): According to GP2, a mixture of diyne $\mathbf{2 7 a}(65.0 \mathrm{mg}, 144 \mu \mathrm{~mol}$), alkyne 5a (128 $\mathrm{mg}, 718 \mu \mathrm{~mol}$), Wilkinson's catalyst ($7.0 \mathrm{mg}, 7.56 \mu \mathrm{~mol}$) and p-xylene $(10 \mathrm{~mL})$ in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction mixture was heated at $130^{\circ} \mathrm{C}$ under nitrogen for 39 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 10:0 to 5:1) afforded $49.0 \mathrm{mg}(54 \%)$ of 28a [$R_{f}=0.15\left(\mathrm{SiO}_{2}\right.$, cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 8:1)] as a yellow solid, mp $274-277^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=$ 3053, 3025, 1601, 1496, 1441, 1377, 1070, 1025, 885, 826, 742, 698. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=6.27(\mathrm{~s}, 2 \mathrm{H}), 6.65-6.90(\mathrm{~m}$, $12 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=123.3,124.5,125.27,125.29,125.9,126.0,126.7$, 127.2, 127.5, 129.1, 129.2, 129.7, 130.5 (all +), 128.9, 135.9, 136.3, $136.5,137.1,137.5,138.3,138.5,139.6,140.5,143.7$ (all $\mathrm{C}_{\text {quat) }}$). One $\mathrm{C}_{\text {quat }}$ and one CH cannot be observed due to signal overlap. MS (70 eV), m / z (\%): 628 (100) $\left[\mathrm{M}^{+}\right], 548$ (10). HRMS (EI) calcd. for $\mathrm{C}_{50} \mathrm{H}_{28}$: 628.2191; found: 628.2212 .

10-(1-Methyl-1-hydroxyethanyl)-9,12-diphenylindenocorannulene (28b): According to GP2, a mixture of diyne $\mathbf{2 7 a}$ ($68.0 \mathrm{mg}, 151$ $\mu \mathrm{mol})$, alkyne $\mathbf{5 b}$ ($110 \mathrm{mg}, 1.30 \mathrm{mmol}$), Wilkinson's catalyst (7.0 mg , $7.57 \mu \mathrm{~mol})$ and p-xylene (10 mL) in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was heated at $130{ }^{\circ} \mathrm{C}$ under nitrogen for 46 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on SiO_{2}. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (from 1:5:0 to 10:3:10) afforded 48.0 mg (60%) of 28b $\left[R_{f}=0.36\left(\mathrm{SiO}_{2}\right.\right.$, hexane/Et $\mathrm{E}_{2} \mathrm{O}$ 1:1)] as a yellow solid, $\mathrm{mp} 248-250$ ${ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=3409(\mathrm{O}-\mathrm{H}), 2967(\mathrm{C}-\mathrm{H}), 1724,1599,1440$, $1361,1150,1071,885,827,705$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}$ $=1.504(\mathrm{~s}, 3 \mathrm{H}), 1.508(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.49-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.67-7.80(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=32.4,32.6\left(\right.$ all +), $74.2\left(\mathrm{C}_{\text {quat }}\right), 123.3,124.5$, 126.29, 126.33, 126.8, 126.9, 127.7, 127.9, 128.02, 128.09, 128.14, 128.7, 128.9, 129.5, 130.2, 130.5 (all +), 129.9, 135.4, 135.7, 136.6, $136.8,137.3,137.4,138.0,138.1,138.3,139.1,140.4,140.55,140.59$, 144.4, 146.7 (all $\mathrm{C}_{\text {quat) }}$. Three $\mathrm{C}_{\text {quat }}$ and one CH cannot be observed due to the signals overlap. MS $(70 \mathrm{eV}), m / z(\%): 534(7)\left[\mathrm{M}^{+}\right], 516$ (100) $\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right], 501$ (42), 250 (13). HRMS (EI) calcd for $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}: 534.1984$; found: 534.1988.

10-Formyl-9,12-di-n-propylindenocorannulene (28c): According to GP2, a mixture of diyne $\mathbf{2 7 b}$ ($157 \mathrm{mg}, 0.41 \mathrm{mmol}$), alkyne $\mathbf{5 k}$ (263 $\mathrm{mg}, 2.05 \mathrm{mmol}$), Wilkinson's catalyst ($19.0 \mathrm{mg}, 20.5 \mu \mathrm{~mol}$) and p-xylene (16 mL) in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The solution was maintained at $130^{\circ} \mathrm{C}$ under nitrogen atmosphere for 60 h . After cooling to room temperature, the
solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:0 to 2:1) afforded 108 mg of $\mathbf{2 7 b}$ and an inseparable mixture (ca. 120 mg) of $\mathbf{2 8} \mathbf{c}$ and trimerization adducts of $\mathbf{5 k}$. The mixture was diluted with THF (50 mL) and treated with concentrated hydrochloric acid $(1 \mathrm{~mL})$. The solution was stirred at room temperature for 1 h . After aqueous workup and removal of the solvent, the residue was subjected to chromatography on alumina, eluting with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) to afford $25 \mathrm{mg}(14 \%)$ of $\mathbf{2 8 c}\left[R_{f}=0.23\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2:1)] as a yellow semisolid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=$ $1.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.89(\mathrm{~m}, 4$ H), 2.98-3.11(m, 2H), 3.27-3.39 (m, 1 H), 3.44-3.58 (m, 1 H), $7.49(\mathrm{~s}, 2 \mathrm{H}), 7.537(\mathrm{~s}, 1 \mathrm{H}), 7.538(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=14.1,14.2($ all +), 22.6, $24.1,30.4,35.2$ (all -), 124.3, 124.8, 126.89, 126.93, 127.2, 127.4, 128.2, 128.3, 133.9, 191.8 (all +), 130.3, 130.4, 133.7, 136.5, 136.7, $137.0,137.6,138.13,138.15,138.30,138.5,139.0,139.6,140.0,140.1$, 143.2, 144.7 (all Cquat). MS (70 eV), m/z (\%): 436 (100) [M $\left.{ }^{+}\right], 407$ $\left(\mathrm{M}^{+}-\mathrm{CHO}\right), 350$ (20), 149 (27). HRMS (EI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{O}$: 436.1827; found: 536.1811.

10,11-Diphenyl-9,12-di- n-propylindenocorannulene (28e): According to GP2, a mixture of diyne $\mathbf{2 7 b}(28.1 \mathrm{mg}, 73.0 \mu \mathrm{~mol})$, alkyne $\mathbf{5 a}(62 \mathrm{mg}, 0.35 \mathrm{mmol})$, Wilkinson's catalyst $(3.5 \mathrm{mg}, 3.78 \mu \mathrm{~mol})$ and p-xylene $(10 \mathrm{~mL})$ in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was maintained at $130^{\circ} \mathrm{C}$ under nitrogen for 3 d . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:0 to $10: 1)$ afforded $17.0 \mathrm{mg}(42 \%)$ of $\mathbf{2 8 e}\left[R_{f}=0.40\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.\right.$, hexane $/ \mathrm{CH}_{2}-$ $\mathrm{Cl}_{2} 5: 1$)] as a yellow solid, mp $242-243{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=$ 3048 (C-H), 2957, 2924, 2869, 1598, 1465, 1378, 1069, 867, 819, $700,565 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.90(\mathrm{~s}, 6 \mathrm{H}), 1.40-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.81(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=14.4(+), 23.0,33.2($ all -$), 123.1,125.9,126.7$, 126.91, 126.94, 127.1, 128.2, 130.0, 130.4 (all +), 130.1, 135.6, 137.0, $137.6,137.9,140.3,141.2,142.6$ (all $\mathrm{C}_{\text {quat }}$). Two $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), m / z(\%): 560(100)\left[\mathrm{M}^{+}\right]$, 489 (41), 356 (20), 243 (11). HRMS (EI) calcd. for $\mathrm{C}_{44} \mathrm{H}_{32}$: 560.2504; found: 560.2496 .

4,5-Di(methoxycarbonyl)-9,10,11,12-tetraphenylindenocorannulene (28f): According to GP2, a mixture of diyne 27c ($85 \mathrm{mg}, 0.15$ mmol), alkyne 5a ($134 \mathrm{mg}, 0.75 \mathrm{mmol}$), Wilkinson's catalyst $(7.0 \mathrm{mg}$, $7.57 \mu \mathrm{~mol})$ and p-xylene $(8 \mathrm{~mL})$ in a Schlenk tube at ambient temperature purged with nitrogen for 5 min . The reaction was maintained at $130{ }^{\circ} \mathrm{C}$ under nitrogen for 3 d . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $3: 1$ to $1: 1$) afforded $70.0 \mathrm{mg}(64 \%)$ of $\mathbf{2 8 f}\left[R_{f}=\right.$ $0.55\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 2\right)$] as a yellow solid, $\mathrm{mp} 315-320^{\circ} \mathrm{C}$. IR (KBr): v $\mathrm{cm}^{-1}=2953(\mathrm{C}-\mathrm{H}), 2925,1727(\mathrm{C}=\mathrm{O}), 1440,1264$, 1071, 744, 698. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=4.00(\mathrm{~s}, 6 \mathrm{H})$, $6.36(\mathrm{~s}, 2 \mathrm{H}), 6.72-7.00(\mathrm{~m}, 12 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~s}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=52.6,124.1,125.2,125.7,126.3,126.8,127.1,128.4,129.4$, $129.9,130.0,130.6131 .4($ all +), 136.9, 137.1, 137.3, 137.5, 139.0, 139.2, 141.7, 141.9, 167.3 (all $\mathrm{C}_{\text {quat) }}$). Five $\mathrm{C}_{\text {quat }}$ and one CH cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), m / z(\%): 744(100)\left[\mathrm{M}^{+}\right]$, 322 (14), 293 (17), 167 (16), 149 (66), 71 (18), 57 (19). HRMS (EI) calcd. for $\mathrm{C}_{54} \mathrm{H}_{32} \mathrm{O}_{4}$: 744.2301 ; found: 744.2290 .

4,5,10,11-Tetra(methoxycarbonyl)-9,12-diphenylindenocorannulene (28g): According to GP2, a mixture of diyne 27c ($87.0 \mathrm{mg}, 0.15$ mmol), alkyne 5e ($109 \mathrm{mg}, 0.77 \mathrm{mmol}$), Wilkinson's catalyst $(7.0 \mathrm{mg}$,
$7.57 \mu \mathrm{~mol})$ and p-xylene $(10 \mathrm{~mL})$ in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was maintained at $130{ }^{\circ} \mathrm{C}$ under nitrogen for 60 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 1:3 to 3:1) afforded $17.6 \mathrm{mg}(17 \%)$ of $\mathbf{2 8 g}\left[R_{f}=\right.$ 0.45 (alumina, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)] as a yellow solid, mp $324-326^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=2949(\mathrm{C}-\mathrm{H}), 1728(\mathrm{C}=\mathrm{O}), 1436,1223,1083,701 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=3.53(\mathrm{~s}, 6 \mathrm{H}), 3.99(\mathrm{~s}, 6 \mathrm{H}), 6.46(\mathrm{~s}, 2$ H), $7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.63(\mathrm{~m}, 6$ $\mathrm{H}), 7.70-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, plus DEPT): $\delta \mathrm{ppm}=52.6,53.2,126.0,126.6,128.9$, $129.0,129.43,129.47,129.8,130.0$ (all +), 131.8, 132.8, 136.3, 137.2, $137.3,137.4,137.6,139.3,139.9,140.1,144.7,167.2,167.8$ (all C quat). One $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}$ (\%): 708 (100) $\left[\mathrm{M}^{+}\right], 677$ (25) $\left[\mathrm{M}^{+}-\mathrm{OCH}_{3}\right], 322$ (23), 206 (10), 149 (48), 91 (15), 57 (12). HRMS (EI) calcd. for $\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{O}_{8}$: 708.1784; found: 708.1766.

4,5-Di(methoxycarbonyl)-9,12-diphenyl-10,11-di-n-propylindenocorannulene (28h): According to GP2, a mixture of diyne 27c (53.0 $\mathrm{mg}, 93.5 \mu \mathrm{~mol})$, alkyne $5 \mathrm{c}(52.0 \mathrm{mg}, 0.47 \mathrm{mmol})$, Wilkinson's catalyst ($4.3 \mathrm{mg}, 4.65 \mu \mathrm{~mol}$) and p-xylene (5 mL) in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was maintained at $110{ }^{\circ} \mathrm{C}$ under nitrogen for 3 d . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $3: 1$ to $1: 1$) afforded $36.1 \mathrm{mg}(57 \%)$ of $\mathbf{2 8 h}\left[R_{f}=\right.$ 0.34 (alumina, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1)] as a yellow solid. IR (KBr): v $\mathrm{cm}^{-1}=2955(\mathrm{C}-\mathrm{H}), 2870,1727(\mathrm{C}=\mathrm{O}), 1439,1263,1172,703 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.43$ (sext, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 2.32-2.54 (m, 4 H), 3.98 (s, 6 H), 6.04 (s, 2 H), $7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 4$ H), $7.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=14.6(+), 24.6,32.3$ (all -), 52.6, 123.4, 125.5, $127.5,128.3,129.0,129.1,129.3,129.6$ (all +), 125.6, 131.3, 135.9, $136.7,137.5,137.7,138.4,140.0,140.3,142.3,167.4$ (all Cquat). Two $\mathrm{C}_{\text {quat }}$ cannot be observed due to signal overlap. MS (70 eV), $\mathrm{m} / \mathrm{z}(\%)$: 676 (100) $\left[\mathrm{M}^{+}\right], 615$ (13), 573 (14), 466 (25), 149 (21), 91 (11). HRMS (EI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{O}_{4}$: 676.2614; found: 676.2637 .

4,5-Di(methoxycarbonyl)-10,11-diphenyl-7,12-di-n-propylindenocorannulene (28i): According to GP2, a mixture of diyne 27c (85.0 $\mathrm{mg}, 0.17 \mathrm{mmol})$, alkyne $\mathbf{5 a}(152 \mathrm{mg}, 0.85 \mathrm{mmol})$, Wilkinson's catalyst $(8.0 \mathrm{mg}, 8.65 \mu \mathrm{~mol})$ and p-xylene $(5 \mathrm{~mL})$ in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was maintained at $110{ }^{\circ} \mathrm{C}$ under nitrogen for 3 d . After cooling to room temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from $3: 1$ to $1: 1$) afforded $42.6 \mathrm{mg}(42 \%)$ of $\mathbf{2 8 i}\left[R_{f}=\right.$ 0.34 (alumina, hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$)] as a yellow solid, mp 158-161 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v \mathrm{~cm}^{-1}=2953(\mathrm{C}-\mathrm{H}), 2869,1725(\mathrm{C}=\mathrm{O}), 1436,1261$, $1171,701 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}=0.90(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.05$ $(\mathrm{s}, 6 \mathrm{H}), 6.93-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2$ $\mathrm{H}), 7.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, plus DEPT): $\delta \mathrm{ppm}=14.5(+), 23.2,33.3$ (all -), 52.8, 123.1, 126.1, 126.2, 127.1, 127.3, 129.6, 130.1, 130.4 (all +), 125.9, 131.6, 136.1, $136.9,137.6,137.7,137.8,138.8,140.1,142.4,143.2,144.9,167.5$ (all $\mathrm{C}_{\text {quat }}$). MS (70 eV), $m / z(\%): 676$ (100) $\left[\mathrm{M}^{+}\right], 573$ (13), 558 (14), 466 (15), 149 (15). HRMS (EI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{36} \mathrm{O}_{4}: 676.2614$; found: 676.2604.

4-(Methoxycarbonyl)-5,9,10,11,12-pentaphenylindenocorannulene (28j): According to GP2, a mixture of diyne 27e ($80.0 \mathrm{mg}, 0.14$ mmol), alkyne 5a ($122 \mathrm{mg}, 0.68 \mathrm{mmol}$), Wilkinson's catalyst (6.3 mg , $6.81 \mu \mathrm{~mol})$ and p-xylene (10 mL) in a Schlenk tube at ambient temperature was purged with nitrogen for 5 min . The reaction was maintained at $130^{\circ} \mathrm{C}$ under nitrogen for 46 h . After cooling to room
temperature, the solvent was removed under reduced pressure and the residue was subjected to chromatography on alumina. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from 10:0 to $2: 1$) afforded $85.0 \mathrm{mg}(81 \%)$ of $\mathbf{2 8 j}$ [R_{f} $=0.43$ (alumina, hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1)] as a yellow solid, mp 246-247 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v \mathrm{~cm}^{-1}=3055(\mathrm{C}-\mathrm{H}), 2926,1721(\mathrm{C}=\mathrm{O}), 1601,1442$, 1232, 1075, 886, 745, 699. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm}=$ $3.58(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.72-7.60(\mathrm{~m}, 29 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}, plus DEPT): $\delta \mathrm{ppm}=51.8,124.0,124.3$, $125.3,128.5,126.3,126.6,126.8,127.0,127.65,127.70,127.8,128.1$, $128.39,128.42,128.8,128.9,129.6,130.0,130.1,130.6,131.4$ (all +), 127.2, 128.2, 128.7, 135.9, 136.6, 137.0, 137.28, 137.35, 137.41, $137.47,137.6,137.7,138.9,139.2,139.4,140.9,141.4,141.5,141.6$, 141.7, 144.7, 168.7 (all $\mathrm{C}_{\text {quat }}$). Four $\mathrm{C}_{\text {quat }}$ and eight CH cannot be observed due to signal overlap. MS $(70 \mathrm{eV}), m / z(\%)$: $762(100)\left[\mathrm{M}^{+}\right]$, 279 (13), 167 (22), 149 (55), 71 (13), 57 (16). HRMS (EI) calcd for $\mathrm{C}_{58} \mathrm{H}_{34} \mathrm{O}_{4}$: 762.2559; found: 762.2582.

Computational Section

The conformational analyses of structure IC described in this study, including structural and orbital arrangements as well as property calculations, were carried out using the Gaussian 98^{64} and GAMESS ${ }^{65}$ software packages. Structural computations were performed using hybrid density functional methods (HDFT). The HDFT method employed Becke's 3 parameter functional ${ }^{66}$ in combination with nonlocal correlation provided by the Lee-Yang-Parr expression ${ }^{67,68}$ that contains both local and nonlocal terms, B3LYP. Dunning's correlation consistent basis set, cc-pVDZ, ${ }^{69}$ a [3s2p1d] contraction of a (9 s 4 p 1 d$)$ primitive set, was employed. Full geometry optimizations were performed and uniquely characterized by calculating and diagonalizing the matrix of energy second derivatives (Hessian) to determine the number of imaginary frequencies $(0=$ minima; $1=$ transition state $)$. From the fully optimized structures, single point energy computations were performed using the MP2 ${ }^{70}$ dynamic correlation treatment for the analysis of chemical and physical properties such as bond localization, and bowl depth. These levels of theory have been previously shown to be reliable for structural and energetic determinations in these types of compounds. ${ }^{54,57}$ We note a nontrivial sensitivity of predicted structure (esp. bowl depth) and barrier with the inclusion of polarization functionality and with the extent and manner of including dynamic correlation. For example, in the case of corannulene, dynamic correlation via HDFT predicts a barrier of $9.2 \mathrm{kcal} / \mathrm{mol}$, whereas MP2 predicts $11.0 \mathrm{kcal} / \mathrm{mol}$ at the same basis set. A more complete analysis of this effect is currently being written.

Acknowledgment. This work was supported by the Swiss NFP grant. Dr. Yoshizumi Yasui, Davide Bandera, Benno Bischof and James Noyes (University of Zurich) are acknowledged for their HPLC analysis, and carefully checking this manuscript and useful suggestions.

Supporting Information Available: The procedures for the preparation of 2,3-dichlororcorannulenes derivatives $\mathbf{2 6 b}$ and $\mathbf{2 6 c}$, the crystal structure data of $\mathbf{2 3}$ and $\mathbf{2 8 g}$ and computational data of IC are presented on the World Wide Web at http:// pubs.acs.org. This material is available free of charge via the Internet at http://pubs.acs.org.

JA058391A

(64) Frisch, M. J.; et al. Gaussian 98, Revision A.6, Pittsburgh, PA, 1998.
(65) Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Elbert, S. T. J. Comput. Chem. 1993, 14, 1347.
(66) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(67) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(68) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
(69) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(70) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.

[^0]: \dagger University of Zurich.
 \ddagger National Cheng-Kung University.
 (1) Beck, A.; Bleicher, M. N.; Crowe, D. W. In Excursions into Mathematics; Worth: New York, 1969.
 (2) (a) Hirsch, A. Top. Curr. Chem. 1999, 199, 1-65. (b) Scott, L. T. Pure Appl. Chem. 1996, 68, 291-300. (c) Rabideau, P. W.; Sygula, A. Acc. Chem. Res. 1996, 29, 235-242. (d) Terrones, H.; Mackay, A. L. In The Fullerenes; Kroto, H. W., Fischer, J. E., Cox, D. E., Eds.; Pergamon: Oxford, 1993, pp 113-122. (e) Seiders, T. J.; Siegel, J. S. Chem. Britain 1995, 31, 307-312.
 (3) Baldridge, K. K.; Siegel, J. S. Theor. Chim. Acta 1997, 97, 67-71.

[^1]: (4) Pyrolysis of fluoranthene derivatives to corannulene, see: (a) Scott, L. T.; Cheng, P.-C.; Hashemi, M. M.; Bratcher, M. S.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1997, 119, 10963-10968. (b) Liu, C. Z.; Rabideau, P. W. Tetrahedron Lett. 1996, 37, 3437-3440. (c) Borchardt, A.; Fuchicello, A.; Kilway, K. V.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 1921-1923. (d) Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1991, 113, 7082-7084. Synthesis of corannulene from fluoranthene derivatives in the solution phase: (e) Sygula, A.; Xu, G.; Marcinow, Z.; Rabideau, P. W. Tetrahedron 2001, 57, 36373644. (f) Xu, G.; Sygula, A.; Marcinow, Z.; Rabideau, P. W. Tetrahedron Lett. 2000, 41, 9931 -9934. (g) Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 2000, 122, 6323-6324. (h) Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 1999, 121, 7804-7813. (i) Seiders, T. J.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1996, 118, 2793.
 (5) Marcinow, Z,; Grove, D, I.; Rabideau, P, W. J. Org. Chem. 2002, 67, 35373539. See also, ref 4.
 (6) Catalytic carbonylation in the presence of iridium complexes and carbon monoxide, see: (a) Shibata, T.; Yamashita, K.; Katayama, E.; Takagi, K. Tetrahedron 2002, 58, 8661-8667. (b) Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3, 1217-1219. Carbonylation with stoichiometric amount of metal carbonyl, see: (c) Shibata, T.; Yamashita, K.; Takagi, K.; Ohta, T.; Soai, K. Tetrahedron 2000, 56, 9259-9267. (d) Knölker, H.-J.; Braier, A.; Bröcher, D. J.; Jones, P. G.; Piotrowski, H. Tetrahedron Lett. 1999, 40, 8075-8078. Reaction of 1,8-bis(phenylethynyl)naphthalene gave the corresponding complexed cyclopentadienone in a 5% yield, see ref 13 .

[^2]: (7) The Knoevenagel reaction of diketone $\mathbf{1}$ and ketones $\mathbf{2}$ would not directly afford cyclopentadienone 3 but the Aldol product, namely carbinols, can be transferred to 3 under acidic conditions, see: (a) Sygula, A.; Sygula, R.; Ellern, A.; Rabideau, P. W. Org. Lett. 2003, 5, 2595-2597. (b) Allen, C. F. H.; van Allan, J. A. J. Org. Chem. 1952, 17, 845-854.
 (8) (a) Viala, C.; Secchi, A.; Gourdon, A. Eur. J. Org. Chem. 2002, 24, 41854189. (b) Wehmeier, M.; Wagner, M.; Müllen, K. Chem. Eur. J. 2001, 7, 2197-2205. (c) Gourdon, A. Eur. J. Org. Chem. 1947, 12, 2797-2801.
 (9) (a) Fabrizio, E. F.; Payne, A.; Westlund, N. E.; Bard, A. J.; Magnus, P. P. J Phys. Chem. A 2002, 106, 1961-1968. (b) Rice, J. E.; LaVoie, E. J.; Hoffmann, D., J. Org. Chem. 1983, 48, 2360-2363.
 (10) Gonzalez, J. J.; Francesch, A.; Cardenas, D. J.; Echavarren, A. M. J. Org. Chem. 1998, 63, 2854-2857.

[^3]: ${ }^{a}$ The reaction was carried out at $80{ }^{\circ} \mathrm{C}$ instead of $40{ }^{\circ} \mathrm{C} .{ }^{b}$ The chemical yield was calculated from the mono Sonogashira reaction of 1-iodo-8-(phenylethynyl)naphthalene and pentafluorophenylethyne. ${ }^{c}$ This is an average chemical yield. The reaction was carried out at $110{ }^{\circ} \mathrm{C}$ instead of $130{ }^{\circ} \mathrm{C} .90$ and two cyclization adducts were isolated as an inseparable mixture (ratio range from 97:3:0 to 89:7:4 over several runs). ${ }^{d}$ Details, see Scheme 3.

[^4]: ${ }^{a}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Starting material was consumed but product was not isolated. ${ }^{c}$ Purification of the combined crude products from entries 4-7 gave 96% yield. ${ }^{d} \mathrm{MeCN}$ was used, instead of p-xylene. ${ }^{e}$ An intramolecular cyclization product (ca. 2%) was also observed. ${ }^{f} \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$.

[^5]: (34) Commercially available acenaphthylene (with 75% purity and 20% of acenaphthene) was purchased from Aldrich.
 (35) It is known that KMnO_{4} can oxidize $\mathbf{1 5}$ to 7, 14-diphenylacenaphtho[1,2k ffluoranthene (16) directly after the Diels-Alder reaction, see ref 8b.

[^6]: (38) Reisch, H. A.; Bratcher, M. S.; Scott, L. T. Org. Lett. 2000, 2, 14271430.
 (39) Marcinow, Z.; Sygula, A.; Ellern, A.; Rabideau, P. W. Org. Lett. 2001, 3, 3527-3529.
 (40) In contrast to other diynes, $4 \mathbf{e}$ easily undergoes the intramolecular cyclization.

[^7]: (41) Compound 23: $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Br}_{2}$, triclinic crystals of space group $P \overline{1}$, unit cell dimensions: $a=7.9066(2), b=9.3760(2), c=13.4358(3) \AA, \alpha=$ 105.214(2), $\beta=98.189(2), \gamma=101.572(2)^{\circ}, V=921.32(4) \AA^{3}$.
 (42) Sonogashira type, see: (a) Méry, D.; Heuzé, K.; Astruc, D. Chem. Commun. 2003, 1934-1935. (b) Remmele, H.; Köllhofer, A.; Plenio, H. Organometallics 2003, 22, 4098-4103. (c) Köllhofer, A.; Pullmann, T.; Plenio, H. Angew. Chem., Int. Ed. 2003, 42, 1056-1058. (d) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127-14136. (e) Eberhard, M. R.; Wang, Z.; Jensen, C. M. Chem. Commun. 2002, 818-819. Suzuki type: (f) Fürstner, A.; Leitner, A. Synlett 2001, 290-292. (g) Stille type: Shirakawa, E.; Yamasaki, K.; Hiyama, T. J. Chem. Soc., Perkin Trans 1 1997, $2449-2450$. Other Method: (h) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.-i.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780-1787.
 (43) Grasa, G. A.; Nolan, S. P. Org. Lett. 2001, 3, 119-122.
 (44) The coupling reaction of $\mathbf{2 5 c}$ and trimethyl(phenylethynyl)stannane in THF under the same conditions did not afford diyne 27e, but only complicated products.
 (45) This procedure has been applied to prepare pentaethynylcorannulenes and decaethynyl-corannulenes, with isolated yields up to 91%, see: Wu, Y.T.; Bandera, D.; Linden, A.; Siegel, J. S. unpublished results.
 (46) The electron-deficient diester derivative of 25 provides the optimal yield for the coupling reaction.

[^8]: (49) (a) Haddon, R. C. Science 1993, 261, 1545-1550. (b) Haddon, R. C. J. Am. Chem. Soc. 1990, 112, 3385-3389. (c) Haddon, R. C. Acc. Chem. Res. 1988, 21, 243-249. (d) Haddon, R. C.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137-142.
 (50) POAV pyramidalizaion angles of the crystal structure were analyzed by mol2mol software.
 (51) Seiders, T. J.; Baldridge, K. K.; O'Connor, J. M.; Siegel, J. S. J. Chem. Soc., Chem. Commun. 2004, 950-951. (b) Seiders, T. J.; Baldridge, K. K.; O'Connor, J. M.; Siegel, J. S. J. Am. Chem. Soc. 1997, 119, 47814782.
 (52) Aprahamian, I.; Hoffman, R. E.; Sheradsky, T.; Preda, D. V.; Bancu, M.; Scott, L. T.; Rabinovitz, M. Angew. Chem., Int. Ed. 2002, 41, 1712-1715.
 (53) Compound 28g: $\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{O}_{8} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, monoclinic crystals of space group $P 2_{1} / n$, unit cell dimensions: $a=17.2204(4), b=14.7197(3), c=28.2615-$ (7) $\AA, \beta=95.9558(9), V=7125.0(3) \AA^{3}$.
 (54) Seiders, T. J.; Baldridge, K. K.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 2001, 123, 517-525.
 (55) Gust, D. J. Am. Chem. Soc. 1977, 99, 6980-6982.

[^9]: (56) The separation of two methyl signals at room temperature depends on the solvents and also on the concentration in CDCl_{3}. The temperature-dependent separation of two methyl signals of $\mathbf{2 8 b}$ in $\left[\mathrm{D}_{6}\right]$-DMSO: $22.5 \mathrm{~Hz}(300 \mathrm{~K})$, $12.6 \mathrm{~Hz}(422 \mathrm{~K})$ and $11.4 \mathrm{~Hz}(455 \mathrm{~K})$.

[^10]: (57) Seiders, T. J.; Baldridge, K. K.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc. 1999, 121, 7439-7440
 (58) Scott, L. T.; Hashemi, M. M.; Bratcher, M. S. J. Am. Chem. Soc. 1992, 114, 1920-1921.
 (59) Sygula, A.; Abdourazak, A. H.; Rabideau, P. W. J. Am. Chem. Soc. 1996, 118, 339-343.
 (60) (a) Zhang, Y.; Wen, J. J. Fluorine Chem. 1990, 47, 533-535. (b) Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489-2496.
 (61) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. 2000, 606, 49-54.
 (62) Moloney, M. G.; Pinhey, J. T.; Roche, E. G. J. Chem. Soc., Perkin Trans. 1 1989, 333-341.

[^11]: (63) Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138-2152.

